什么是 ‘Multi-hop Graph RAG’:利用 LangGraph 驱动 Agent 在 Neo4j 图谱上进行深度关联路径搜索 各位同仁,下午好! 今天,我们将深入探讨一个前沿且极具潜力的技术范式——’Multi-hop Graph RAG’。在生成式AI浪潮席卷而来的当下,如何让大语言模型(LLM)摆脱“幻觉”,获取准确、可靠的知识,并进行深层次的推理,成为了我们面临的核心挑战。传统的检索增强生成(RAG)已经取得了显著成就,但在处理复杂、需要多步推理的问题时,其能力边界逐渐显现。’Multi-hop Graph RAG’正是为了突破这一瓶颈而生,它结合了图数据库的强大关联能力、LLM的语义理解与推理能力,以及LangGraph的复杂Agent工作流编排能力,旨在实现对知识的深度关联路径搜索和理解。 1. 引言:RAG 的演进与挑战 大语言模型(LLM)在理解、生成和总结文本方面展现了惊人的能力。然而,它们的核心局限在于其知识是静态的,来自于训练数据,且容易产生“幻觉”,即生成看似合理但实际错误的信息 …
继续阅读“什么是 ‘Multi-hop Graph RAG’:利用 LangGraph 驱动 Agent 在 Neo4j 图谱上进行深度关联路径搜索”