在大型语言模型(LLM)驱动的智能系统中,我们经常追求高准确性、可解释性和对复杂规则的严格遵守。然而,尽管LLM在生成文本、理解上下文和进行模糊推理方面表现出色,它们在处理硬性逻辑、严格遵守预定义规则以及避免“幻觉”方面仍面临挑战。当业务逻辑、法律法规或科学原理需要零容忍的精确性时,仅仅依赖LLM的统计模式匹配能力是不足的。 这就是我们今天探讨的核心:如何在LangGraph框架中集成Prolog风格的硬性逻辑规则,以辅助并增强模型推理。我们将深入研究如何将符号逻辑的确定性与LLM的灵活性结合起来,构建一个既能理解复杂语境又能严格执行规则的智能系统。 LLM的局限性与符号逻辑的优势 大型语言模型通过学习海量数据中的模式来工作。这种能力使其在开放域问答、创意写作和语义理解等任务中表现卓越。然而,当涉及到以下场景时,它们的局限性便显现出来: 确定性与精确性: LLM不擅长进行100%确定性的推理。例如,在税务计算、法律条文核对或复杂的供应链管理中,一个微小的偏差都可能导致严重后果。LLM可能会根据其训练数据中的“常见模式”给出答案,而非严格遵循既定规则。 可解释性: LLM的决策过程通常是 …
继续阅读“解析 ‘Predicate Logic Integration’:如何在 LangGraph 中集成 Prolog 风格的硬性逻辑规则以辅助模型推理?”