并行计算:`joblib` 与 `multiprocessing` 在 NumPy 中的应用

好的,各位听众老爷,欢迎来到今天的“并行计算那点事儿”讲堂!我是你们的老朋友,人称“代码界的段子手”的AI君。今天咱们不聊风花雪月,只谈并行计算,尤其是joblib和multiprocessing这两位在NumPy世界里呼风唤雨的大佬。 开场白:单挑BOSS太慢?组队刷怪才是王道! 话说,咱们程序员每天的工作,就像游戏里的勇者,面对各种各样的Bug和需求,一路披荆斩棘。但有些任务,比如处理海量数据、训练复杂模型,简直就是史诗级BOSS,单枪匹马硬刚,耗时耗力,头发都掉光了也未必能搞定。 这个时候,就需要我们的秘密武器——并行计算!想象一下,你不再是一个人孤军奋战,而是召唤了一群小伙伴,大家齐心协力,分工合作,一起刷BOSS,效率自然蹭蹭蹭往上涨!🚀 而joblib和multiprocessing,就是咱们组队刷怪的强力工具。它们能让你轻松地将任务分解成多个子任务,分配给多个CPU核心并行执行,从而大幅提升计算速度。 第一幕:multiprocessing——自带光环的“亲儿子” multiprocessing是Python自带的模块,就像是Python的“亲儿子”,血统纯正,功能强大。 …

Pandas 中的并行计算:`joblib` 与 `multiprocessing`

好的,各位观众,欢迎来到“Pandas加速超车道”讲座!我是你们的老司机,今天就带大家一起探索Pandas并行计算的秘密武器——joblib和multiprocessing。 准备好了吗?系好安全带,咱们要加速啦!🚀 第一站:为什么要给Pandas加速? 各位有没有这样的经历:辛辛苦苦写了一段Pandas代码,信心满满地跑起来,结果…等了半天,电脑风扇呼呼直响,进度条纹丝不动。那一刻,是不是感觉自己像在用蜗牛🐌给火箭引擎供能? 别怀疑,这很正常。Pandas虽然功能强大,但本质上还是单线程的。这就好比一辆豪华跑车,却只能用一个轮子驱动,速度自然快不起来。 想象一下,你要处理一个几百万行的数据集,进行复杂的聚合、转换操作。如果还是单线程,那简直就是一场噩梦!😴 因此,给Pandas加速,让它充分利用多核CPU的优势,变得刻不容缓! 第二站:两位加速神器闪亮登场——joblib vs multiprocessing 今天,我们要介绍两位加速Pandas的秘密武器:joblib和multiprocessing。它们就像跑车的两个涡轮增压器,能瞬间提升Pandas的性能。 1. joblib: …