GraphRAG的社区检测:利用Leiden算法对知识图谱进行分层摘要生成的工程实现

好的,让我们开始吧。 GraphRAG中的社区检测:Leiden算法驱动的分层摘要生成 大家好,今天我们要深入探讨一个非常有趣且实用的主题:如何在GraphRAG(Graph-based Retrieval Augmented Generation)系统中利用社区检测算法,特别是Leiden算法,来进行知识图谱的分层摘要生成。这不仅能提升RAG系统的效率,也能让生成的内容更具结构性和相关性。 1. GraphRAG与知识图谱的简要回顾 首先,让我们快速回顾一下GraphRAG和知识图谱的概念。 GraphRAG: 是一种结合了图神经网络(GNN)和检索增强生成(Retrieval Augmented Generation)的架构。其核心思想是,利用图结构来表示知识,并利用图算法进行知识检索,然后将检索到的知识作为上下文信息,输入到大型语言模型(LLM)中,以生成更准确、更相关的回复。 知识图谱 (Knowledge Graph): 是一种结构化的知识表示形式,由实体(nodes)和关系(edges)组成。例如,“北京”和“中国”是实体,“位于”是它们之间的关系。知识图谱可以有效地存储和 …

GraphRAG中的社区摘要:利用Leiden算法对知识图谱进行分层聚类与摘要生成

GraphRAG中的社区摘要:利用Leiden算法对知识图谱进行分层聚类与摘要生成 大家好,今天我们来深入探讨一个GraphRAG领域中非常有趣且实用的技术:利用Leiden算法对知识图谱进行分层聚类与摘要生成。在RAG(Retrieval-Augmented Generation)系统中,知识图谱作为检索的数据源,其质量直接影响最终生成结果的准确性和相关性。然而,大型知识图谱往往包含海量的信息,直接进行检索会导致效率低下,并且容易引入噪声信息。因此,对知识图谱进行有效的组织和摘要变得至关重要。 1. 背景:知识图谱与RAG的挑战 知识图谱(Knowledge Graph, KG)是一种结构化的知识表示方法,它使用节点表示实体(Entities),边表示实体之间的关系(Relations)。 KG在问答系统、推荐系统、语义搜索等领域有着广泛的应用。 RAG是一种结合了信息检索和文本生成的技术。它首先从外部知识库(例如知识图谱)中检索相关信息,然后将检索到的信息作为上下文提供给语言模型,由语言模型生成最终的答案或者文本。 在RAG系统中,使用知识图谱作为知识库面临以下挑战: 图谱规模庞大 …