Python实现用于高维数据的近似索引结构:Locality-Sensitive Hashing(LSH)

Python实现高维数据的近似索引结构:Locality-Sensitive Hashing (LSH) 大家好,今天我们来深入探讨一个在高维数据检索中非常重要的技术:Locality-Sensitive Hashing,简称LSH。在高维空间中进行精确的最近邻搜索通常是计算密集型的,而LSH提供了一种高效的近似解决方案。我们将用Python来实现LSH,并逐步讲解其背后的原理。 1. 什么是Locality-Sensitive Hashing (LSH)? LSH 是一种将相似数据点映射到相同哈希桶中的哈希技术。 它的核心思想是:如果两个数据点在高维空间中是“相似的”,那么它们在经过 LSH 函数的哈希后,更有可能被分配到同一个桶中。反之,如果两个数据点不相似,它们被哈希到同一个桶中的概率就比较低。 这种技术的核心在于“locality-sensitive”的特性,意味着哈希函数的设计要能捕捉到数据点之间的局部相似性。通过这种方式,我们可以将原本在高维空间中的搜索问题,转化为在哈希桶内的搜索问题,从而大大降低了计算复杂度。 2. LSH 的基本原理 LSH 的工作流程大致如下: 哈希 …