各位同仁,各位对软件工程自动化与人工智能前沿技术充满热情的专家学者们,大家好。 今天,我将与大家深入探讨一个激动人心且极具实践价值的话题:如何利用“工具反馈循环”(Tool Feedback Loops),特别是从错误堆栈信息中提取的宝贵线索,来引导大型语言模型(LLM)进行自动代码重构。这不仅仅是关于修复Bug,更是关于构建一套能够自我修复、自我优化,并持续演进的软件系统。 在软件开发的世界里,我们每天都在与代码打交道。我们编写它,测试它,部署它,然后当它出现问题时,我们调试它,修复它。这个循环周而复始。而随着LLM在代码生成领域的崛起,我们看到了一个前所未有的机会:让机器不仅能生成代码,还能像经验丰富的工程师一样,理解错误、分析问题,并主动进行代码改进。 然而,LLM并非万能。它们在生成代码时,可能会犯语法错误、逻辑错误,甚至引入安全漏洞。它们缺乏对代码实际运行环境的感知,也无法直接执行代码来验证其正确性。这就是“工具反馈循环”的用武之地。通过将LLM与我们现有的强大开发工具(编译器、Linter、测试框架、运行时环境)结合起来,我们可以创建一个闭环系统,让LLM在真实反馈中学习、 …
继续阅读“解析 ‘Tool Feedback Loops’:如何利用工具返回的错误堆栈信息引导 LLM 进行自动代码重构”