Python实现非线性优化:Levenberg-Marquardt算法在模型拟合中的应用 大家好,今天我们来聊聊非线性优化,特别是Levenberg-Marquardt算法,以及它在模型拟合中的应用。非线性优化在科学、工程、金融等领域有着广泛的应用,而Levenberg-Marquardt算法是一种非常流行的解决非线性最小二乘问题的算法。 1. 什么是模型拟合与非线性优化? 模型拟合是指找到一个数学模型,使其能够最好地描述给定的数据。这个模型通常包含一些参数,我们需要通过优化这些参数来最小化模型预测值与实际观测值之间的差异。 当模型是线性的,或者可以转化为线性模型时,我们可以使用线性回归等方法。但是,当模型是非线性的,例如指数函数、对数函数、三角函数等,我们就需要使用非线性优化算法。 非线性优化问题可以一般地描述为: 最小化 f(x) 其中 x 是模型的参数,f(x) 是一个目标函数,通常是误差的某种度量。在模型拟合中,f(x) 常常是残差平方和。 2. Levenberg-Marquardt (LM) 算法的原理 Levenberg-Marquardt算法是一种迭代算法,用于解决非线 …