Physics of Language Models:从理论物理视角解析大模型在知识存储中的相变与临界点 各位观众,大家好。今天我们来探讨一个非常有趣的话题:大语言模型(LLMs)的物理学。具体来说,我们将从理论物理的视角,特别是相变和临界点的概念,来理解LLMs如何存储知识,以及它们在学习过程中可能发生的行为。 1. 引言:连接语言模型与物理学 长期以来,人们一直将LLMs视为纯粹的工程产物,关注的是其性能指标,如困惑度(perplexity)、准确率(accuracy)等。然而,随着模型规模的不断扩大,LLMs展现出一些令人惊讶的涌现能力,例如上下文学习(in-context learning)、推理(reasoning)等。这些能力的出现,引发了人们对LLMs内部机制的更深层次思考。 一个富有成效的思路是将LLMs视为一种复杂的物理系统。正如统计物理学可以用来描述大量粒子的集体行为一样,我们可以尝试用类似的理论框架来理解LLMs中大量参数的相互作用,以及它们如何共同实现对知识的存储和处理。 2. 知识存储:能量最小化与吸引子 LLMs通过训练来学习语言的统计规律。在训练过程中,模 …
Deep Equilibrium Models(DEQ):通过定点迭代寻找平衡点实现无限深度的隐式层
Deep Equilibrium Models (DEQ): 通过定点迭代寻找平衡点实现无限深度的隐式层 大家好!今天我们来聊聊 Deep Equilibrium Models (DEQ),这是一种非常有意思的神经网络架构,它通过定点迭代的方式,实现了无限深度的隐式层。 这意味着我们可以构建一个看似无限深的网络,但实际上只需要有限的内存和计算资源。 让我们一起深入了解 DEQ 的原理、实现以及优缺点。 1. 传统深度学习的局限性与DEQ的动机 传统的深度学习模型,比如 CNN、RNN、Transformer 等,都是通过堆叠多个离散的层来构建的。 每增加一层,模型的深度就增加一层,参数量和计算量也会随之增加。 虽然更深的网络通常能获得更好的性能,但也带来了训练难度大、容易过拟合等问题。 此外,对于序列数据,RNN虽然能处理变长输入,但其固有的时间步依赖性限制了并行化能力。 DEQ 的出现,提供了一种不同的思路。 它不再通过堆叠离散的层,而是定义一个隐式的平衡方程,并通过迭代的方式求解该方程的定点。 这样,模型就相当于拥有了无限深度,但实际的计算只发生在迭代求解定点的过程中。 更具体地说 …
Diffusion Models生成文本:Diffusion-LM与自回归模型生成质量的对比研究
Diffusion Models生成文本:Diffusion-LM与自回归模型生成质量的对比研究 大家好!今天我们来聊聊一个近年来备受关注的文本生成技术:Diffusion Models。更具体地说,我们将深入探讨 Diffusion Models 如何应用于文本生成,并将其性能与传统的自回归模型进行比较,尤其关注 Diffusion-LM 这个具有代表性的模型。 1. 文本生成任务的演变与挑战 文本生成任务,从最初的机器翻译、文本摘要,到如今的对话系统、故事创作,已经渗透到我们日常生活的方方面面。早期,循环神经网络(RNN)及其变种,如LSTM、GRU,是文本生成领域的主流。随后,Transformer架构凭借其强大的并行计算能力和对长距离依赖关系的建模能力,迅速取代了RNN,成为新的霸主。GPT、BERT、T5等预训练语言模型在大量文本数据上进行训练,并在下游任务上进行微调,极大地提升了文本生成的质量。 然而,自回归模型虽然表现出色,但也存在一些固有的局限性: 暴露偏差(Exposure Bias): 在训练阶段,模型接收真实的文本序列作为输入,预测下一个词;而在推理阶段,模型生成 …