各位同学,各位同仁,大家好。 今天,我们将深入探讨一个在人工智能领域日益重要且充满挑战的话题——Meta-Prompt Optimization,即“元提示词优化”。随着大型语言模型(LLMs)能力的飞速发展,如何有效、高效地与它们沟通,以最大化其潜力,成为了我们面临的核心问题。这门学问,我们称之为“提示工程”(Prompt Engineering)。然而,手动进行提示工程常常是一项耗时、主观且难以扩展的任务。正是在这种背景下,元提示词优化应运而生,它旨在将提示词的设计与改进过程自动化、智能化。 本次讲座的重点是,我们将结合一种强大的优化算法——遗传算法(Genetic Algorithm),来构建一个能够持续迭代并找到最优“节点指令集”的系统。这里的“节点指令集”可以理解为一系列相互关联的提示词,它们共同协作,引导LLM完成复杂任务。 1. 提示工程的艺术与挑战 首先,让我们简单回顾一下什么是提示工程。 1.1 什么是提示工程? 提示工程是一门设计和优化输入提示词(prompts)的学科,旨在指导大型语言模型生成特定、高质量、符合预期的输出。一个好的提示词能够充分发挥LLM的潜力,而 …
继续阅读“什么是 ‘Meta-Prompt Optimization’?在循环图中利用遗传算法不断迭代最优的节点指令集”