好的,我们开始吧。 Task Vector Orthogonality:分析不同任务微调向量的正交性以预测合并干扰 大家好,今天我们来深入探讨一个有趣且实用的课题:如何利用任务向量的正交性来预测不同任务微调后模型合并时可能出现的干扰。在多任务学习和模型泛化能力提升的背景下,模型合并(Model Merging)成为一种重要的技术。它允许我们结合多个在不同任务上微调过的模型的优势,从而创建一个性能更强大、适应性更广的模型。然而,简单地合并这些模型往往会遇到“灾难性干扰”(Catastrophic Interference)的问题,即合并后的模型在某些任务上的性能反而不如单个模型。 为了解决这个问题,我们需要理解不同任务微调对模型参数的影响,以及这些影响之间是如何相互作用的。一个关键的观察是,每个任务的微调过程可以被看作是在参数空间中沿着特定方向移动。这个方向可以被表示为一个“任务向量”(Task Vector)。如果这些任务向量之间是正交的,那么它们的合并就不会产生显著的干扰;反之,如果它们之间存在较大的夹角,那么合并可能会导致某些任务的性能下降。 1. 任务向量的定义与计算 首先,我们 …