好的,我们开始。 异常值抑制(Outlier Suppression):在W8A8量化中处理Transformer激活值尖峰的旋转技巧 Transformer模型在自然语言处理和其他领域取得了显著的成功。然而,其庞大的规模和计算复杂度使其难以在资源受限的设备上部署。量化是一种有效的模型压缩技术,可以将模型的权重和激活值从浮点数转换为低精度整数,从而减小模型大小并提高推理速度。 W8A8量化是一种常见的量化方案,它将权重和激活值都量化为8位整数。虽然W8A8量化可以显著提高推理效率,但它也面临着一些挑战。其中一个主要挑战是Transformer激活值中存在的异常值(outliers)。这些异常值是指那些幅度远大于其他激活值的数值。它们的存在会严重影响量化性能,因为量化器需要更大的动态范围来容纳这些异常值,从而导致量化精度下降。 本文将深入探讨异常值对W8A8量化的影响,并介绍一种有效的异常值抑制技术——旋转技巧(Rotation Trick)。我们将详细解释旋转技巧的原理、实现方法以及在Transformer模型中的应用。此外,我们还将提供实验结果,以证明旋转技巧在提高W8A8量化Tra …
继续阅读“异常值抑制(Outlier Suppression):在W8A8量化中处理Transformer激活值尖峰的旋转技巧”