vLLM核心技术:PagedAttention机制详解 各位朋友,大家好!今天我们来深入探讨vLLM的核心技术——PagedAttention,一种旨在解决KV Cache显存碎片化与吞吐量瓶颈的创新机制。在大模型推理场景下,KV Cache(Key-Value Cache)用于存储Transformer层中Key和Value的中间表示,是影响推理速度和显存利用率的关键因素。PagedAttention通过巧妙地管理KV Cache,显著提升了大模型的推理性能。 一、KV Cache与性能瓶颈 在传统的Transformer推理中,每当处理一个新的token,都需要将Key和Value向量存储在显存中。随着序列长度的增加,KV Cache的体积也随之线性增长。对于长序列推理,KV Cache很容易占据大量的显存空间,导致OOM(Out Of Memory)错误。 此外,传统的KV Cache管理方式容易造成显存碎片化。例如,当处理不同长度的序列时,会频繁地分配和释放KV Cache空间,导致显存中出现许多不连续的小块空闲空间。这些碎片化的空间无法有效地被利用,进一步降低了显存利用率。 …