投毒攻击(Data Poisoning):在预训练数据中植入后门触发词的防御与检测

投毒攻击(Data Poisoning):在预训练数据中植入后门触发词的防御与检测 大家好,今天我们来探讨一个在机器学习安全领域越来越受关注的话题:投毒攻击,特别是针对预训练数据中植入后门触发词的攻击及其防御与检测。 1. 引言:预训练模型的脆弱性 近年来,预训练模型(Pre-trained Models, PTMs)如BERT、GPT系列等在自然语言处理(NLP)领域取得了巨大的成功。它们通过在大规模数据集上进行预训练,学习通用的语言表示,然后在下游任务上进行微调,取得了显著的性能提升。然而,这种依赖大规模数据的预训练范式也带来了一个潜在的风险:投毒攻击。 攻击者可以通过控制或篡改预训练数据,向模型植入后门,使其在特定条件下表现出恶意行为。这种攻击的隐蔽性极高,因为后门只有在触发特定模式(例如,包含特定词语或短语的句子)时才会激活,而正常情况下模型的行为与预期一致。 2. 投毒攻击的原理与类型 投毒攻击的核心思想是在训练数据中引入少量精心设计的恶意样本,这些样本通常包含触发词和目标行为。当模型接触到这些恶意样本时,会学习到触发词与目标行为之间的关联。 2.1 后门植入过程 后门植入通 …