Python中的神经过程(Neural Processes):建模不确定性与数据效率 大家好,今天我们来探讨一个近年来备受关注的概率模型:神经过程 (Neural Processes, NPs)。NPs 是一类强大的元学习模型,它能够学习函数的先验分布,并根据少量上下文数据推断出新的函数值,同时还能提供预测的不确定性估计。与传统的神经网络相比,NPs 在数据效率和不确定性建模方面具有显著优势。 1. 引言:函数建模的挑战 在机器学习中,我们经常需要解决函数建模问题,即根据一些观测数据,学习一个能够预测未知输入对应输出的函数。传统的神经网络方法,如多层感知机 (MLP) 或卷积神经网络 (CNN),通常需要大量的训练数据才能学习到一个好的函数逼近器。然而,在许多实际应用中,数据获取的成本很高,或者数据本身就非常稀疏。例如,在机器人学习中,机器人需要根据少量几次交互学习如何完成一项新任务;在医疗诊断中,医生需要根据有限的患者数据做出准确的诊断。 此外,传统的神经网络通常只能提供点估计,即对每个输入预测一个单一的输出值。它们无法量化预测的不确定性,这在许多风险敏感的应用中是一个严重的问题。例 …