各位朋友,大家好!我是今天的主讲人,咱们今天来聊聊Python世界里两个“加速器”:Cython和PyPy。它们都是为了解决Python在CPU密集型任务中速度可能不够快的问题而生的。今天,咱们不搞学院派,就用大白话和实在的例子,看看它们到底哪个更厉害,或者说,更适合你。 一、Python的“慢”从何而来? 要理解Cython和PyPy的价值,咱们得先知道Python为啥有时候会“慢”。这“慢”主要来自于以下几个方面: 解释型语言: Python是解释型语言,这意味着代码不是直接运行在CPU上,而是需要解释器一行一行翻译成机器码再执行。这中间就多了一道工序,自然会慢一些。 动态类型: Python是动态类型语言,变量的类型是在运行时确定的。每次操作变量,解释器都需要检查类型,这也会增加开销。 全局解释器锁(GIL): 这个GIL是Python的一大特色,也是一大槽点。它保证了同一时刻只有一个线程可以执行Python字节码。这意味着即使你有多个CPU核心,Python的多线程也无法真正并行执行CPU密集型任务。 二、Cython:给Python穿上“C语言马甲” Cython,你可以把它 …
继续阅读“Python高级技术之:`Python`的`Cython`与`PyPy`:在`CPU`密集型任务中的性能对比。”