QuIP#算法:利用Incoherence Processing与Hessian信息优化2bit量化推理

好的,下面我们开始今天的讲座,主题是“QuIP#算法:利用Incoherence Processing与Hessian信息优化2bit量化推理”。 引言:量化推理的挑战与机遇 深度学习模型在资源受限的设备上的部署面临着巨大的挑战。为了降低模型大小、加速推理速度并降低功耗,量化技术应运而生。量化是指将模型中的权重和激活值从高精度(如FP32)转换为低精度(如INT8、INT4甚至2bit)。虽然低精度量化能够带来显著的性能提升,但也伴随着精度损失的风险。尤其是当精度降低到2bit时,信息表达能力急剧下降,如何有效地保持模型的准确性成为一个关键问题。 2bit量化:高压缩比的代价 2bit量化将权重或激活值限制在四个离散值上,通常表示为{-1, -0.5, 0.5, 1}或{-1, 0, 0, 1}。这种极端的量化方案虽然能够实现极高的压缩比,但也可能导致严重的性能下降。这是因为2bit量化引入了较大的量化误差,使得模型无法准确地捕捉输入数据中的细微变化。 QuIP#:2bit量化的优化方案 QuIP# (Quantization with Incoherence Processing) …