Transformer中的“软最大值”替代方案:ReLU-Attention在稀疏性与量化友好性上的优势 大家好,今天我们要深入探讨Transformer架构中的一个关键组件——注意力机制,并着重关注其Softmax函数的替代方案,尤其是ReLU-Attention在稀疏性和量化友好性方面的优势。 1. 引言:Transformer与注意力机制的瓶颈 Transformer模型,凭借其强大的并行处理能力和捕捉长距离依赖关系的能力,已经成为自然语言处理(NLP)和计算机视觉(CV)等领域的主流架构。其核心组成部分之一就是自注意力(Self-Attention)机制。自注意力机制通过计算输入序列中不同位置之间的相关性来生成权重,从而更好地理解序列的上下文信息。 然而,标准的自注意力机制依赖于Softmax函数来归一化注意力权重。Softmax函数虽然能够将权重转换为概率分布,但也存在一些局限性: 计算复杂度高: Softmax函数需要计算指数运算,这在长序列和高维嵌入的情况下会显著增加计算负担。 梯度消失: 当输入值差异较大时,Softmax函数的梯度可能会变得非常小,导致训练困难。 缺乏 …