代码生成的仓库级上下文(Repo-level Context):利用依赖图(Dependency Graph)剪枝Prompt

代码生成的仓库级上下文:利用依赖图剪枝Prompt 大家好,今天我们来探讨一个在代码生成领域中非常重要且具有挑战性的课题:如何有效地利用仓库级别的上下文信息,特别是依赖图,来优化Prompt,从而提高代码生成的质量和效率。 在单文件代码生成任务中,我们通常只需要关注当前文件的语法、语义以及少量的局部上下文信息。然而,在实际的软件开发场景中,代码往往组织成大型的仓库,包含大量的相互依赖的文件。这些文件之间的依赖关系,构成了代码的依赖图。忽略这些依赖关系,会导致生成的代码无法与其他模块协同工作,甚至产生编译错误。 问题背景:代码生成与仓库级上下文 近年来,随着深度学习技术的快速发展,基于Transformer的预训练语言模型在代码生成领域取得了显著的成果。例如,Codex、CodeGen、StarCoder等模型都展现了强大的代码生成能力。然而,这些模型在处理大型代码仓库时,往往面临以下几个挑战: 上下文窗口限制: Transformer模型的上下文窗口长度有限,难以容纳整个代码仓库的信息。 信息过载: 将整个代码仓库的信息都输入模型,会引入大量的噪声,降低生成质量。 依赖关系理解: 模型 …

Repo-level Prompting:利用依赖图分析构建全仓库级别的代码上下文补全

Repo-level Prompting:利用依赖图分析构建全仓库级别的代码上下文补全 大家好!今天我们来聊聊一个非常实用且前沿的话题:Repo-level Prompting,即利用依赖图分析构建全仓库级别的代码上下文补全。在日常开发中,我们经常需要理解和修改大型代码库,而传统的代码补全工具往往只能提供局部上下文的信息,无法充分利用整个仓库的知识。Repo-level Prompting旨在通过构建代码依赖图,为代码补全提供更全面、更准确的上下文信息,从而提高开发效率和代码质量。 一、代码补全的局限与挑战 传统的代码补全技术,例如基于AST(抽象语法树)的补全或者基于统计语言模型的补全,通常只关注当前文件或者有限的几个相关文件。这种局部性限制导致了以下问题: 缺乏全局视角: 无法理解代码在整个项目中的作用和影响。例如,一个函数可能在多个模块中被调用,简单的补全无法提示这些调用点。 难以处理跨文件依赖: 当需要补全的代码涉及到跨文件的函数调用、类继承或者接口实现时,传统方法往往无法提供准确的建议。 无法利用项目特定知识: 每个项目都有其独特的代码风格、设计模式和领域知识,而传统补全方法 …