Routing Networks:在Token级别动态选择计算路径的条件计算 大家好!今天我们要深入探讨一个激动人心的主题:Routing Networks,以及它如何在Token级别实现动态计算路径的选择,也就是所谓的条件计算。这是一种强大的技术,可以显著提升模型效率,尤其是在处理序列数据时。 什么是Routing Networks? Routing Networks是一种神经网络架构,它允许模型根据输入数据的特性,动态地选择不同的计算路径。传统的神经网络,无论输入是什么,通常都会经过相同的计算流程。而Routing Networks则打破了这个限制,它引入了一个“路由器”的概念,该路由器会根据输入(通常是token级别的特征)决定将输入传递给哪个或哪些“专家”(Experts)。 这个“专家”可以是任何神经网络模块,例如Feed Forward Network (FFN),Transformer层,甚至是更复杂的子网络。关键在于,不同的专家擅长处理不同类型的输入。通过这种方式,模型可以更高效地利用参数,并且能够更好地适应数据的多样性。 为什么需要Token级别的动态选择? 在序列数 …
继续阅读“Routing Networks:在Token级别动态选择计算路径的条件计算(Conditional Computation)”