SmoothQuant:解决LLM激活值异常点(Outliers)问题以实现W8A8量化推理 大家好,今天我们来深入探讨一下SmoothQuant,这是一种解决大型语言模型(LLM)激活值异常点(Outliers)问题,从而实现W8A8量化推理的关键技术。我们将从量化基础、异常点问题、SmoothQuant原理与实现,以及实验结果分析等方面进行详细讲解。 1. 量化基础:从FP32到INT8的飞跃 深度学习模型通常使用32位浮点数(FP32)进行训练和推理。虽然FP32提供了高精度,但也带来了巨大的计算和存储开销,尤其是在部署到资源受限的设备上时。量化技术旨在将模型的权重和激活值从FP32转换为低精度格式,如8位整数(INT8),从而显著降低计算成本和模型大小,同时尽可能保持模型性能。 量化的基本原理是将FP32范围内的数值映射到INT8的范围内。这个映射过程通常包括缩放(Scaling)和截断(Clipping)两个步骤。 缩放(Scaling): 将FP32数值乘以一个缩放因子,将其范围调整到INT8的范围内。这个缩放因子通常是通过统计FP32数值的范围(例如,最大值和最小值)来确 …