模型汤(Model Soup)技术:平均多个微调权重的泛化性能与贪婪搜索策略

模型汤(Model Soup):平均权重与贪婪搜索提升泛化性能 大家好,今天我们来深入探讨一下模型汤(Model Soup)技术。这是一个相对简单但效果显著的方法,用于提升模型的泛化性能。我们将重点关注两种主要的实现方式:平均多个微调模型的权重,以及使用贪婪搜索策略来挑选最佳的权重组合。 1. 模型汤的核心思想 模型汤的核心思想是,通过某种方式将多个模型的优势结合起来,从而得到一个比单个模型更好的“混合”模型。这基于一个假设:不同的模型可能在不同的数据子集上表现良好,将它们结合起来可以平滑掉各自的缺点,并保留各自的优点。 模型汤的原理可以理解为集成学习的一种特殊形式,但与传统的集成学习(如 Bagging、Boosting)不同,模型汤通常直接对模型的权重进行操作,而不是训练多个独立的模型并进行投票或加权平均。 2. 平均权重:简单而有效的基线 最简单的模型汤方法就是直接平均多个微调模型的权重。 假设我们有 n 个微调后的模型,它们的权重分别为 θ1, θ2, …, θn。 平均后的权重 θ_soup 可以表示为: θ_soup = (θ1 + θ2 + … + θn) / n …