SteerLM:利用多维属性标签动态控制模型行为 大家好,今天我们来深入探讨一个非常有趣且实用的主题:SteerLM,它是一种在推理时利用多维属性标签动态控制模型行为的技术。随着大型语言模型(LLMs)能力的日益增强,如何精确控制它们的输出,使其符合特定的需求和风格,变得越来越重要。SteerLM 正是解决这一问题的有效方法之一。 1. 背景:LLM 控制的挑战 大型语言模型在生成文本方面表现出色,但它们本质上是概率模型,输出结果往往难以预测和控制。例如,我们可能希望模型生成既幽默又实用的回复,或者生成更正式或更具创造性的文本。传统的方法,如prompt engineering,虽然有效,但需要大量的实验和调优,且往往难以泛化到不同的场景。 更具体地说,以下是一些常见的挑战: 缺乏细粒度控制: Prompt engineering 主要依赖于在输入 prompt 中加入指令,但难以精确控制输出的各个方面。例如,很难通过 prompt 单独控制幽默感或实用性。 Prompt 依赖性: 模型的行为高度依赖于 prompt 的措辞,即使是细微的改变也可能导致结果的显著差异。 泛化能力差: 为 …