动态温度:根据 Token 确信度实时调整采样熵的策略 大家好,今天我们来深入探讨一下大语言模型(LLM)解码策略中的一个重要概念——动态温度。在传统的解码方法中,温度(Temperature)是一个全局性的超参数,它控制着模型生成文本的随机性。然而,这种一刀切的方法往往难以适应模型输出的不同阶段和不同类型的 Token。动态温度策略则试图解决这个问题,它根据模型对每个 Token 的“确信度”来实时调整采样熵,从而更精细地控制生成过程。 1. 温度采样的基本原理 在深入动态温度之前,我们先回顾一下标准温度采样的基本原理。 假设我们有一个语言模型,它预测下一个 Token 的概率分布为 P(x_i | x_{<i}),其中 x_i 是第 i 个 Token,x_{<i} 是它之前的 Token 序列。在解码过程中,我们希望从这个概率分布中采样得到下一个 Token。 温度 T 的作用是调整这个概率分布的形状。经过温度缩放后的概率分布 P_T(x_i | x_{<i}) 定义如下: P_T(x_i | x_{<i}) = softmax(logits / T) 其 …