解析 ‘Tree of Thoughts’ (ToT):利用 LangChain 构建一个支持回溯和并行路径搜索的思维树

深入解析 ‘Tree of Thoughts’ (ToT):利用 LangChain 构建支持回溯与并行路径搜索的思维树 尊敬的各位技术同仁: 欢迎来到今天的讲座。我们将深入探讨一种前沿的、能显著提升大型语言模型(LLM)解决复杂问题能力的范式——思维树(Tree of Thoughts, ToT)。不同于传统的链式思考(Chain of Thought, CoT),ToT赋予LLM规划、探索和自我修正的能力,使其能够更有效地应对需要多步骤推理、决策和评估的任务。我们将聚焦如何利用LangChain这一强大的框架,从零开始构建一个支持回溯和并行路径搜索的ToT系统。 1. 深入理解思维树 (Tree of Thoughts, ToT) 1.1. ToT 的起源与核心思想 大型语言模型在处理开放式、多步骤推理任务时,常常面临挑战。传统的提示工程技术,如零样本(Zero-shot)或少样本(Few-shot)提示,以及链式思考(Chain of Thought, CoT),虽然在一定程度上提高了模型的推理能力,但它们本质上是线性的。CoT提示模型生成一系列中间推理步 …

ToT(Tree of Thoughts):结合广度优先搜索(BFS)与回溯机制的复杂问题求解

ToT(Tree of Thoughts):结合广度优先搜索(BFS)与回溯机制的复杂问题求解 大家好,今天我们来聊聊一个比较前沿,也很有意思的话题:Tree of Thoughts,简称ToT。ToT是一种用于解决复杂问题的框架,它巧妙地结合了广度优先搜索(BFS)和回溯机制,能够有效地探索解空间,最终找到最优解或近似最优解。 在传统的解决问题的方法中,我们通常采用链式思维(Chain of Thought, CoT),即一步一步地推理,直至得到最终答案。CoT在一定程度上可以提高模型的可解释性,但也存在一个明显的缺陷:一旦某一步推理出现偏差,后续的推理都将受到影响,最终导致错误的结果。ToT则借鉴了人类解决问题的思路,允许模型进行多角度思考,并在必要时进行回溯,从而提高解决复杂问题的能力。 1. ToT的核心思想 ToT的核心思想是将问题分解为多个中间步骤,每个步骤对应一个“想法”(Thought)。模型在每个步骤中生成多个可能的想法,形成一个“想法树”(Tree of Thoughts)。然后,模型利用评价函数对每个想法进行评估,并根据评估结果选择最有希望的分支进行扩展。如果模型 …