Vera(Vector-based Random Matrix Adaptation):冻结随机投影矩阵仅训练缩放因子的极致参数压缩

Vera:冻结随机投影矩阵仅训练缩放因子的极致参数压缩 大家好,今天我们来探讨一种名为Vera(Vector-based Random Matrix Adaptation)的参数压缩技术。这个技术的核心思想是利用随机投影矩阵进行降维,并且冻结这个随机矩阵,仅训练一个缩放因子,从而实现极致的参数压缩。我们将深入了解Vera的原理、实现方法,以及它在实际应用中的优势和局限性。 1. 参数压缩的必要性与挑战 在深度学习模型日益庞大的今天,参数压缩变得越来越重要。巨大的模型带来了一系列问题: 存储空间需求高昂: 存储大型模型需要大量的磁盘空间,尤其是在移动设备或嵌入式设备上,存储空间往往非常有限。 计算资源消耗巨大: 训练和推理大型模型需要大量的计算资源,这不仅增加了成本,也限制了模型在资源受限环境中的应用。 部署难度增加: 大型模型的部署更加复杂,需要更高的带宽和更快的网络连接。 为了解决这些问题,研究人员提出了各种参数压缩技术,例如: 剪枝 (Pruning): 移除模型中不重要的连接或神经元。 量化 (Quantization): 使用更低精度的数据类型来表示模型参数。 知识蒸馏 (Kn …