尊敬的各位同仁,各位对人工智能成本优化与智能决策系统感兴趣的专家们,大家下午好! 今天,我们齐聚一堂,探讨一个在当前大模型时代日益凸显的关键议题:如何在享受大型语言模型(LLM)强大能力的同时,有效管理其日益增长的运营成本。特别是,当我们的“Token 余额”捉襟见肘时,如何能不至于“破产”,又能维持业务的正常运转?我将为大家深入剖析一个名为 “Cost-aware Graph Pruning”(成本感知图剪枝) 的策略,它能帮助我们智能地在廉价模型路径和高成本模型路径之间进行切换。 1. 大模型时代的成本困境:从计算力到Token余额 在过去几年中,大型语言模型如GPT系列、Llama、Gemini等,以其前所未有的理解、生成和推理能力,彻底改变了人工智能的应用格局。它们在内容创作、代码辅助、客户服务、数据分析等领域展现出惊人的潜力。然而,伴随这些强大能力而来的,是其高昂的运行成本。 1.1 Token经济学:大模型成本的基石 大多数主流LLM服务提供商都采用基于Token的计费模式。无论是输入给模型的提示(prompt),还是模型生成的响应(completion),都会被分解成一系 …
继续阅读“什么是 ‘Cost-aware Graph Pruning’:当 Token 余额不足时,如何通过图剪枝强制切换到廉价模型路径?”