各位编程爱好者、AI应用开发者们,大家好! 今天,我们将深入探讨LangChain框架中一个极其强大且灵活的机制——Callbacks。在构建复杂的AI应用时,我们经常需要对模型的行为进行监控、日志记录、性能分析,甚至在特定事件发生时触发自定义逻辑。Callbacks机制正是为此而生,它像一系列事件监听器,让我们可以“窥探”LangChain组件(如LLMs、Chains、Agents)的内部运作,并在关键生命周期事件点插入我们自己的代码。 本次讲座的重点,将放在如何通过自定义Callback Handler,实现一个实时、精确的Token消耗统计器。这对于成本控制、性能优化以及理解模型行为至关重要。 一、LangChain Callbacks 机制概览 在LangChain中,Callbacks 提供了一种非侵入式的扩展能力。当一个 LangChain 组件(比如一个大型语言模型调用、一个链的执行、一个代理的决策过程或工具使用)开始、进展或结束时,它会触发一系列预定义的事件。Callback Handler 就是用来捕获并响应这些事件的类。 1.1 为什么需要 Callbacks? …
继续阅读“解析 LangChain 中的 ‘Callbacks’ 机制:如何通过自定义 Handler 实现实时 Token 消耗统计?”