各位观众老爷,大家好!我是今天的讲师,江湖人称“Bug终结者”。今天咱不聊风花雪月,直接上干货,聊聊静态分析工具的克星——垃圾字符注入,以及如何用算法把这些“牛皮癣”给铲干净。
开场白:静态分析工具的烦恼
静态分析工具,那可是程序猿的得力助手,能在代码运行前揪出潜在的Bug、安全漏洞,简直就是“代码界的X光机”。但是,再牛逼的X光机,也怕被乱七八糟的东西干扰,影响成像质量。这个“乱七八糟的东西”,就是我们今天要说的——垃圾字符。
垃圾字符注入是个啥?
简单来说,垃圾字符注入就是在代码中插入一些对程序逻辑没有影响,但是能迷惑静态分析工具的字符或者代码。这些字符就像代码里的“隐身衣”,让静态分析工具难以准确识别代码的真实意图,从而漏掉真正的Bug。
垃圾字符注入的花样
垃圾字符注入的手法多种多样,简直是“十八般武艺样样精通”。常见的有以下几种:
- 注释干扰: 在注释中加入大量无意义的字符,让静态分析工具花费大量时间解析注释,影响分析效率。
- 字符串拼接: 将字符串拆分成多个部分,然后用无意义的字符拼接起来,让静态分析工具难以识别字符串的真实内容。
- 条件分支混淆: 插入一些永远不会执行的条件分支,或者让条件分支的判断条件变得非常复杂,让静态分析工具难以判断代码的执行路径。
- 死代码插入: 插入一些永远不会被执行的代码块,让静态分析工具花费时间分析这些无用的代码。
- 等价代码替换: 使用等价但是更复杂的代码替换原有的简单代码,增加静态分析工具的分析难度。
- 控制流平坦化: 将代码的控制流打乱,让代码的执行顺序变得难以预测,增加静态分析工具的分析难度。
- 操作码替换: 将一些操作码替换成等价的操作码,增加静态分析工具的分析难度。例如
i = i + 1
变成i += 1
或者i = i - (-1)
。 - 伪造数据结构: 创建一些看起来像正常数据结构,但实际上是假的结构,让分析工具误判。
- 函数调用重定向: 将函数调用重定向到其他函数,迷惑分析工具。
- Unicode/ASCII 混淆: 在字符串中使用Unicode字符和ASCII字符混淆,让分析工具难以识别字符串内容。
垃圾字符注入的危害
垃圾字符注入的危害可不小:
- 降低静态分析的准确性: 导致静态分析工具漏报、误报,让程序猿无法及时发现代码中的Bug。
- 增加静态分析的时间: 让静态分析工具花费更多的时间分析代码,降低开发效率。
- 增加代码的维护难度: 让代码变得难以阅读、理解,增加代码的维护成本。
静态分析工具为何如此“脆弱”?
静态分析工具虽然强大,但也不是万能的。它们在分析代码时,主要依赖于以下技术:
- 词法分析: 将代码分解成一个个的Token,例如关键字、变量名、运算符等。
- 语法分析: 根据编程语言的语法规则,将Token组成语法树。
- 语义分析: 分析代码的语义,例如变量的类型、函数的调用关系等。
- 数据流分析: 分析代码中数据的流动情况,例如变量的赋值、使用等。
- 控制流分析: 分析代码的执行路径,例如条件分支、循环等。
垃圾字符注入正是利用了静态分析工具的这些弱点,通过干扰词法分析、语法分析、语义分析等过程,让静态分析工具无法准确地理解代码的真实意图。
垃圾字符过滤算法的设计思路
要对抗垃圾字符注入,就必须设计一种高效的垃圾字符过滤算法,将这些“牛皮癣”从代码中剔除出去。算法的设计思路主要有以下几点:
- 识别垃圾字符的特征: 针对不同的垃圾字符注入手法,提取其特征。例如,对于注释干扰,可以识别大量的无意义字符;对于字符串拼接,可以识别被拆分的字符串。
- 建立垃圾字符的黑名单: 将常见的垃圾字符加入黑名单,例如一些无意义的Unicode字符、控制字符等。
- 利用机器学习技术: 训练机器学习模型,自动识别垃圾字符。例如,可以使用自然语言处理(NLP)技术,分析代码的语义,识别与代码逻辑无关的字符。
- 代码规范检查: 强制执行代码规范,例如限制注释的长度、禁止使用过于复杂的条件分支等。
高效的垃圾字符过滤算法:实例讲解
接下来,我们以一个具体的例子来说明如何设计高效的垃圾字符过滤算法。假设我们要过滤掉代码中的注释干扰。
算法描述:
- 预处理: 将代码中的注释提取出来。
- 特征提取: 提取注释的长度、字符熵、重复字符比例等特征。
- 判断: 如果注释的长度超过阈值,或者字符熵低于阈值,或者重复字符比例高于阈值,则认为该注释是垃圾字符。
- 处理: 将垃圾字符注释从代码中删除。
代码实现(Python):
import re
import math
def calculate_entropy(text):
"""计算字符串的熵"""
if not text:
return 0
entropy = 0
frequencies = {}
for char in text:
if char in frequencies:
frequencies[char] += 1
else:
frequencies[char] = 1
for frequency in frequencies.values():
probability = float(frequency) / len(text)
entropy -= probability * math.log(probability, 2)
return entropy
def filter_junk_comments(code, max_length=200, min_entropy=2.0, max_repeat_ratio=0.8):
"""过滤垃圾字符注释"""
# 提取注释
comments = re.findall(r'//.*|/*[sS]*?*/', code)
filtered_code = code
for comment in comments:
# 特征提取
length = len(comment)
entropy = calculate_entropy(comment)
repeat_ratio = 0
if length > 0:
max_repeat_char = max(set(comment), key=comment.count)
repeat_ratio = float(comment.count(max_repeat_char)) / length
# 判断
if length > max_length or entropy < min_entropy or repeat_ratio > max_repeat_ratio:
print(f"发现垃圾字符注释: {comment[:50]}...") #打印前50个字符
# 处理
filtered_code = filtered_code.replace(comment, "")
return filtered_code
# 示例代码
code = """
int main() {
int i = 0;
// 这是一个正常的注释
i++;
/*
* 这是一个多行注释
*/
i++;
// aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
i++;
/*
* asdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfastring idio.
输出结果:
发现垃圾字符注释: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...
*/
* asdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdf...
过滤后的代码:
int main() {
int i = 0;
// 这是一个正常的注释
i++;
/*
* 这是一个多行注释
*/
i++;
i++;
i++;
return 0;
}
算法优化:
- 使用Bloom Filter: 可以使用Bloom Filter来快速判断一个字符串是否是垃圾字符。Bloom Filter是一种空间效率很高的概率型数据结构,可以用来检测一个元素是否在一个集合中。
- 结合其他特征: 除了长度、字符熵、重复字符比例外,还可以结合其他特征,例如词法特征、语法特征等,来提高判断的准确性。
- 使用多线程: 可以使用多线程来并行处理代码中的注释,提高过滤效率。
其他垃圾字符过滤策略
上面的例子只是针对注释的过滤。对于其他的垃圾字符注入方式,我们需要采取不同的策略。
- 对于字符串拼接: 可以使用动态污点分析技术来跟踪字符串的拼接过程,识别被拆分的字符串。
- 对于条件分支混淆: 可以使用符号执行技术来分析代码的执行路径,识别永远不会执行的条件分支。
- 对于死代码插入: 可以使用静态程序切片技术来识别与程序输出无关的代码,即死代码。
- 对于等价代码替换: 可以构建等价代码的模式库,识别并替换这些复杂的等价代码。
- 对于控制流平坦化: 可以使用控制流解平坦化技术,恢复代码的原始控制流。
- 操作码替换: 使用模式匹配,识别常见的操作码替换,然后还原。
- 对于伪造数据结构: 检查数据结构的使用方式和上下文,如果与预期不符,则可能是伪造的。
- 对于函数调用重定向: 检查函数调用的目标地址,如果目标地址不在预期的范围内,则可能是重定向。
- 对于Unicode/ASCII 混淆: 可以将字符串统一转换成ASCII或者Unicode,然后进行分析。
表格总结:常见垃圾字符注入方式及应对策略
垃圾字符注入方式 | 特征 | 应对策略 |
---|---|---|
注释干扰 | 长度过长、字符熵低、重复字符比例高 | 基于长度、字符熵、重复字符比例的过滤算法 |
字符串拼接 | 字符串被拆分、拼接符无意义 | 动态污点分析、字符串重构 |
条件分支混淆 | 条件永远为真或假、条件过于复杂 | 符号执行、控制流分析 |
死代码插入 | 代码不影响程序输出 | 静态程序切片 |
等价代码替换 | 代码功能相同但更复杂 | 等价代码模式库、代码简化 |
控制流平坦化 | 控制流被打乱、大量跳转 | 控制流解平坦化技术 |
操作码替换 | 使用等价操作码代替原始操作码 | 模式匹配替换 |
伪造数据结构 | 数据结构使用方式异常 | 数据结构上下文分析 |
函数调用重定向 | 函数调用目标地址异常 | 函数调用链分析 |
Unicode/ASCII 混淆 | 字符串中混用Unicode和ASCII字符 | 字符串编码统一化 |
实战案例:某开源项目的垃圾字符过滤
我们曾经对一个开源项目进行过垃圾字符过滤,发现该项目存在大量的注释干扰。我们使用了上述的注释过滤算法,成功地将这些垃圾注释从代码中剔除出去,提高了静态分析的效率和准确性。
总结与展望
垃圾字符注入是一种常见的代码混淆技术,会对静态分析工具造成很大的干扰。设计高效的垃圾字符过滤算法是提高静态分析准确性和效率的关键。未来,随着代码混淆技术的不断发展,垃圾字符过滤算法也需要不断地更新和完善。
几点建议:
- 重视代码规范: 良好的代码规范是预防垃圾字符注入的有效手段。
- 使用多种分析工具: 结合使用静态分析、动态分析等多种分析工具,可以提高代码分析的准确性。
- 持续学习: 关注代码混淆技术的最新发展,及时更新和完善垃圾字符过滤算法。
好了,今天的讲座就到这里。希望大家有所收获,能够更好地应对垃圾字符注入的挑战。谢谢大家!