引言:AI时代的“人机协作”与LangGraph的核心价值 在人工智能日益渗透我们工作与生活的今天,大型语言模型(LLMs)以其强大的生成和理解能力,正在重塑诸多行业。然而,LLMs并非万能,它们可能产生幻觉、输出不准确信息、甚至生成带有偏见或不当内容。在许多关键业务场景,如金融审批、医疗诊断辅助、法律文书审查、内容发布审核等,完全自动化决策的风险是不可接受的。这时,“人机协作”(Human-in-the-loop, HITL)范式应运而生,它旨在将人类的判断力、常识和伦理洞察力引入AI工作流,形成一个智能与人工优势互补的闭环系统。 LangChain作为构建LLM应用的事实标准,提供了丰富的工具链。而LangGraph,作为LangChain生态系统中的一个强大扩展,专注于通过图结构来编排复杂、有状态的多代理(multi-agent)工作流。它的核心优势在于能够清晰地定义流程中的各个步骤(节点)、数据流向(边)以及状态的演变。更重要的是,LangGraph提供了精妙的“检查点”(Checkpoints)机制,这正是实现高度灵活、可中断、可恢复的人机协作工作流的关键。 本讲座将深入探讨 …
继续阅读“解析 ‘Human-in-the-loop’:如何在 LangGraph 中设置检查点(Checkpoints)等待人工审批后再继续执行?”