Python 中的张量分解:CP/Tucker 分解的数值稳定实现 大家好,今天我们来深入探讨 Python 中张量分解的数值稳定实现,重点关注 CP (CANDECOMP/PARAFAC) 分解和 Tucker 分解。张量分解是多维数据分析中的强大工具,广泛应用于机器学习、数据挖掘、信号处理等领域。然而,直接应用标准的分解算法可能会遇到数值不稳定的问题,尤其是在处理大规模或病态数据时。因此,了解并实现数值稳定的分解算法至关重要。 1. 张量分解简介 首先,我们简要回顾一下张量分解的概念。张量是多维数组,可以看作是矩阵的推广。张量分解的目标是将一个给定的张量分解成若干个低秩张量的组合,从而提取数据中的潜在结构和模式。 1.1 CP 分解 CP 分解(也称为 CANDECOMP/PARAFAC 分解)是将一个张量分解成若干个秩一张量的和。对于一个 $N$ 阶张量 $mathcal{X} in mathbb{R}^{I_1 times I_2 times dots times I_N}$,其 CP 分解可以表示为: $$mathcal{X} approx sum_{r=1}^{R} mat …
继续阅读“Python中的张量分解(Tensor Decomposition)算法:CP/Tucker分解的数值稳定实现”