好的,现在我们开始讨论现代大型语言模型(LLM)中Dense层移除Bias项的现象。 引言:神经网络中的Bias项作用与意义 在深入探讨为何现代LLM倾向于移除Dense层中的Bias项之前,我们首先需要理解Bias项在神经网络中的作用和意义。简单来说,Bias项允许神经元在所有输入都为零时也能激活。 考虑一个简单的线性回归模型: y = wx + b 其中,y是输出,x是输入,w是权重,b是Bias项。如果没有Bias项,模型只能学习通过原点的线性关系。Bias项b的存在使得模型能够学习任意的线性关系,从而增加了模型的表达能力。 在神经网络中,每个神经元都可以看作是一个简单的线性回归模型加上一个激活函数。Bias项的作用与线性回归模型中类似,它允许神经元在没有输入信号时也能激活。这在处理某些类型的数据时非常重要,例如,当输入数据主要集中在正值区域时,Bias项可以帮助神经元更好地学习负值区域的特征。 Dense层中的Bias项:传统做法 在传统的神经网络设计中,Dense层(也称为全连接层或线性层)通常包含Bias项。例如,在PyTorch中,一个典型的Dense层可以这样定义: i …
继续阅读“偏置项(Bias Terms)的移除:为何现代LLM(如PaLM, Llama)倾向于在Dense层中去除Bias”