多视角一致性:利用Epipolar Attention约束生成3D对象的几何正确性 大家好,今天我们来探讨一个有趣且重要的课题:如何利用多视角一致性来提升3D对象生成的几何正确性,特别是通过Epipolar Attention机制。在3D计算机视觉领域,从多个2D图像重建或者生成3D对象是一项基本任务。多视角几何提供了强大的理论基础,而如何有效地将这些几何约束融入到深度学习模型中,仍然是一个活跃的研究方向。 1. 多视角几何基础回顾 在深入Epipolar Attention之前,我们先回顾一下多视角几何的一些核心概念。 相机模型: 我们通常假设相机遵循针孔相机模型。一个3D点 P 在世界坐标系中的坐标为 P = (X, Y, Z),经过相机投影后,在图像上的坐标为 p = (u, v)。投影过程可以用以下公式表示: p = K[R|t]P 其中,K 是相机内参矩阵,描述相机的固有属性(如焦距、主点),[R|t] 是相机外参矩阵,描述相机在世界坐标系中的位姿。R 是旋转矩阵,t 是平移向量。 基本矩阵(Fundamental Matrix): 假设我们有两个相机,它们拍摄了同一个3D点 …
继续阅读“多视角一致性(Multi-view Consistency):利用Epipolar Attention约束生成3D对象的几何正确性”