Feedback Transformer:多步推理中的纠错利器 各位同学,大家好。今天我们要探讨一个非常有趣且实用的Transformer架构改进方案:Feedback Transformer。尤其是在多步推理任务中,它能显著提升模型的性能。 多步推理的挑战 在深入了解Feedback Transformer之前,我们先来明确一下多步推理的难点。许多现实世界的任务,例如数学问题求解、代码生成、复杂逻辑推理等,都需要模型进行多次连续的推理步骤才能得出最终答案。 传统的Transformer模型在处理这类问题时,容易出现以下问题: 误差累积: 在推理的早期步骤中出现的微小错误,会在后续步骤中被放大,最终导致错误的结论。 缺乏纠错机制: 模型在进行推理时,无法有效利用之前步骤的信息进行纠错,一旦出错就难以修正。 梯度消失/爆炸: 随着推理步骤的增加,梯度在反向传播时可能会消失或爆炸,导致模型难以训练。 Feedback Transformer 的核心思想 Feedback Transformer的核心思想是在Transformer模型中引入反馈回路(Feedback Loops),允许模型在 …
继续阅读“Feedback Transformer:引入反馈回路(Feedback Loops)以增强模型在多步推理中的纠错能力”