Medusa架构:利用多个解码头(Decoding Heads)实现非自回归式的树状推测采样

Medusa 架构:利用多个解码头实现非自回归式的树状推测采样 大家好,今天我们来深入探讨一个令人兴奋的自然语言生成领域的新兴架构:Medusa。Medusa 架构旨在通过利用多个解码头实现非自回归式的树状推测采样,从而显著加速文本生成过程,同时保持甚至提升生成质量。 1. 推测解码的局限性与 Medusa 的动机 传统的自回归解码方式,如在 Transformer 模型中常用的方法,每次只生成一个 token,这使得生成速度成为一个瓶颈,尤其是在生成长文本时。推测解码 (Speculative Decoding) 是一种加速自回归解码的策略。其核心思想是先用一个小而快的模型 (draft model) 快速生成一段草稿文本,然后用一个大而精确的模型 (target model) 来验证和修正这个草稿,从而一次性生成多个 token。 然而,传统的推测解码仍然存在一些局限性: 依赖于 draft model 的质量: draft model 的质量直接影响到推测的准确率。如果 draft model 生成的草稿质量太差,target model 需要花费大量时间来修正,加速效果会大打折 …

归纳头(Induction Heads):双层Attention回路如何实现复制与上下文学习

归纳头(Induction Heads):双层Attention回路如何实现复制与上下文学习 大家好,今天我们来深入探讨一下大型语言模型(LLMs)中一个非常有趣的现象:归纳头(Induction Heads)。理解归纳头对于理解LLMs如何进行上下文学习(In-Context Learning,ICL)至关重要,而上下文学习又是LLMs强大能力的核心。我们将从Attention机制入手,逐步构建双层Attention回路,并用代码演示其如何实现复制(Copying)和模拟上下文学习。 1. Attention机制回顾 首先,我们来回顾一下Attention机制。Attention机制允许模型在处理序列数据时,动态地关注输入序列的不同部分。其核心思想是为输入序列的每个元素分配一个权重,表示该元素与其他元素的相关性。 Attention机制通常包含以下几个步骤: 计算Query、Key和Value: 对于输入序列的每个元素,通过线性变换得到Query (Q)、Key (K)和Value (V)向量。 计算Attention权重: 使用Query和Key计算Attention权重。常用的计 …