LISA微调策略:分层重要性采样(Layerwise Importance Sampling)在内存受限场景下的应用 大家好,今天我们来深入探讨一个在大型语言模型(LLM)微调中非常关键且实用的技术:LISA(Layerwise Importance Sampling)。特别是在内存资源受限的情况下,LISA能帮助我们更有效地利用有限的计算资源,达到更好的微调效果。 背景:LLM微调的挑战与机遇 大型语言模型,如GPT-3、LLaMA等,已经展现出了强大的能力。然而,要让这些模型在特定任务上表现出色,往往需要进行微调。微调,简单来说,就是在预训练模型的基础上,用特定任务的数据集进行训练,使模型更好地适应目标任务。 微调过程面临着诸多挑战,其中最突出的就是计算资源的需求。LLM参数规模巨大,微调时需要大量的GPU内存。即使使用目前最先进的硬件,也很难在单张GPU上完成完整的模型微调。同时,数据并行、模型并行等技术虽然可以缓解内存压力,但会引入额外的通信开销,影响训练效率。 在这种背景下,如何更有效地利用有限的内存资源,成为LLM微调的关键问题。LISA应运而生,它通过对模型不同层进行重要 …
继续阅读“LISA微调策略:分层重要性采样(Layerwise Importance Sampling)在内存受限场景下的应用”