Python实现深度学习中的神经切线核(NTK):用于分析模型在无限宽度时的行为

好的,下面我们开始探讨Python中神经切线核(NTK)的实现以及它在深度学习模型无限宽度分析中的应用。 神经切线核(NTK)导论:无限宽度下的深度学习理论 在深入研究具体代码之前,我们需要理解神经切线核 (Neural Tangent Kernel, NTK) 的核心概念。 NTK 提供了一种分析深度神经网络在无限宽度限制下的行为的强大工具。 简单来说,当神经网络的宽度(例如,隐藏层中的神经元数量)趋于无穷大时,网络的训练动态可以通过一个固定的核函数来描述,这个核函数就是 NTK。 这种简化使得我们可以对深度学习模型的泛化能力、收敛速度等性质进行理论分析。 NTK 的数学基础 考虑一个深度神经网络 f(x; θ),其中 x 是输入, θ 是网络的参数。 NTK 定义为: K(x, x’) = E[∂f(x; θ)/∂θ ∂f(x’; θ)/∂θᵀ] 其中, E 表示对参数 θ 的期望,这个期望是在参数初始化时计算的。关键在于,在无限宽度的神经网络中,训练过程相当于在由 NTK 定义的再生核希尔伯特空间 (Reproducing Kernel Hilbert Space, RKHS) …

神经正切核(NTK)视角的缩放定律:无限宽网络极限下的学习动力学推导

神经正切核(NTK)视角的缩放定律:无限宽网络极限下的学习动力学推导 大家好,今天我们来深入探讨一个深度学习领域的核心概念:神经正切核 (Neural Tangent Kernel, NTK)。我们将从 NTK 的基本原理出发,逐步推导出无限宽网络极限下的学习动力学,并最终解释缩放定律 (Scaling Laws) 如何在 NTK 框架下体现。 1. 神经网络与函数空间 首先,我们需要明确神经网络的本质:它是一个参数化的函数。给定输入 x 和网络参数 θ,神经网络 f(x; θ) 输出一个预测值。 深度学习的目标是找到一组最优参数 θ,使得 f(x; θ)* 尽可能接近真实函数。 例如,一个简单的两层全连接神经网络可以表示为: import numpy as np def relu(x): return np.maximum(0, x) def neural_network(x, W1, b1, W2, b2): “”” 两层全连接神经网络。 Args: x: 输入向量 (shape: (input_dim,)). W1: 第一层权重矩阵 (shape: (hidden_dim, in …

NTK-Aware Scaled RoPE:通过神经正切核理论实现非微调情况下的上下文长度外推

NTK-Aware Scaled RoPE:通过神经正切核理论实现非微调情况下的上下文长度外推 大家好,今天我们要深入探讨一个非常有趣且实用的主题:NTK-Aware Scaled RoPE,以及它如何利用神经正切核(Neural Tangent Kernel, NTK)理论在不进行微调的情况下实现上下文长度的外推。这对于扩展现有大型语言模型(LLM)的应用范围,降低计算成本具有重要意义。 1. 上下文长度外推的挑战 大型语言模型(LLM)在训练时通常会限定一个最大上下文长度(例如4096 tokens)。然而,实际应用中,我们常常需要处理超出这个长度的序列。直接截断序列会导致信息丢失,而对整个模型进行微调以适应更长的上下文则需要大量的计算资源和时间。 现有的上下文长度外推方法主要分为两大类: 微调方法: 这类方法通过在更长的序列上微调模型来提升其处理长上下文的能力。然而,微调成本高昂,且可能导致模型遗忘已学习的知识。 非微调方法: 这类方法试图在不改变模型参数的情况下,通过修改模型的输入或输出,使其能够处理更长的上下文。例如,位置编码的插值、相对位置编码的缩放等。 NTK-Aware …