WSD(Warmup-Stable-Decay)学习率调度:相比余弦退火在持续预训练中的灾难性遗忘缓解 大家好!今天我们来深入探讨一个在持续预训练中至关重要的话题:学习率调度策略,特别是WSD(Warmup-Stable-Decay)学习率调度,以及它如何缓解在持续预训练过程中使用余弦退火可能出现的灾难性遗忘问题。 1. 持续预训练与灾难性遗忘 持续预训练(Continual Pre-training),也称为增量预训练(Incremental Pre-training),是指在一个已经预训练好的模型基础上,使用新的数据集进行进一步的训练,使其能够适应新的知识或任务。这种方法在实际应用中非常常见,例如,我们可能先用大规模通用文本数据集预训练一个语言模型,然后用特定领域的文本数据(例如医学文献、金融新闻)进行持续预训练,以提高其在该领域的表现。 然而,持续预训练面临一个严峻的挑战:灾难性遗忘(Catastrophic Forgetting)。灾难性遗忘是指模型在学习新知识的同时,会迅速忘记之前学习到的知识。这在神经网络中是一个普遍现象,尤其是在使用梯度下降法进行训练时。想象一下,我们已经 …