Python强化学习框架Actor-Critic模型实现:并行采样与分布式梯度更新策略
大家好,今天我们来深入探讨Actor-Critic模型在Python强化学习框架中的实现,重点聚焦于并行采样和分布式梯度更新策略。Actor-Critic方法是强化学习中一类非常强大的算法,它结合了策略梯度(Policy Gradient)方法的优点和时序差分(Temporal Difference, TD)学习的优势。策略梯度方法擅长处理连续动作空间,但方差较高;TD学习方法学习效率高,但容易受到环境偏差的影响。Actor-Critic模型通过Actor学习策略,Critic评估策略的价值,从而实现更稳定和高效的学习过程。
1. Actor-Critic模型基础
Actor-Critic模型由两部分组成:
- Actor (策略网络): 负责学习策略π(a|s),即在给定状态s下采取动作a的概率。Actor的目标是最大化期望回报。
- Critic (价值网络): 负责评估当前策略的价值函数V(s)或Q(s, a)。Critic的目标是准确估计策略的价值,为Actor提供指导。
Actor-Critic模型的训练过程通常如下:
- 采样: Actor根据当前策略π(a|s)与环境交互,生成一系列状态-动作-奖励-下一个状态的样本 (s, a, r, s’)。
- 评估: Critic使用TD学习方法(例如SARSA或Q-learning)更新价值函数V(s)或Q(s, a)。
- 更新: Actor使用Critic提供的价值估计作为反馈,调整策略π(a|s)。
常见的Actor-Critic算法包括:
- A2C (Advantage Actor-Critic): 使用优势函数A(s, a) = Q(s, a) – V(s)来降低方差。
- A3C (Asynchronous Advantage Actor-Critic): 使用多个Actor-Critic agent并行与环境交互,异步更新全局网络。
- DDPG (Deep Deterministic Policy Gradient): 用于连续动作空间,Actor输出确定性动作,Critic评估动作的价值。
- TD3 (Twin Delayed Deep Deterministic Policy Gradient): 对DDPG的改进,使用两个Critic网络来降低Q值估计的偏差。
- SAC (Soft Actor-Critic): 引入熵正则化,鼓励探索,学习更鲁棒的策略。
2. 并行采样策略
传统的强化学习算法通常使用单个agent与环境交互,效率较低。并行采样策略通过多个agent同时与环境交互,收集更多的训练数据,从而加速学习过程。
2.1 多进程采样
使用Python的multiprocessing库可以实现多进程采样。每个进程维护一个独立的Actor-Critic agent和环境副本。
import multiprocessing
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
# 定义Actor网络
class Actor(nn.Module):
def __init__(self, state_dim, action_dim):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, action_dim) # 假设动作是连续的
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
action = torch.tanh(self.fc3(x)) # 将动作限制在[-1, 1]
return action
# 定义Critic网络
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, 1)
def forward(self, state, action):
x = torch.cat([state, action], dim=1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
value = self.fc3(x)
return value
# 定义采样函数
def collect_samples(actor, critic, env, num_episodes, gamma, actor_optimizer, critic_optimizer):
episodes = []
for _ in range(num_episodes):
state = env.reset()
episode = []
done = False
while not done:
state_tensor = torch.FloatTensor(state).unsqueeze(0)
action = actor(state_tensor).detach().numpy()[0]
next_state, reward, done, _ = env.step(action)
episode.append((state, action, reward, next_state, done))
state = next_state
# 计算TD误差并更新网络
states, actions, rewards, next_states, dones = zip(*episode)
states = torch.FloatTensor(np.array(states))
actions = torch.FloatTensor(np.array(actions))
rewards = torch.FloatTensor(np.array(rewards))
next_states = torch.FloatTensor(np.array(next_states))
dones = torch.FloatTensor(np.array(dones))
values = critic(states, actions).squeeze()
next_actions = actor(next_states).detach()
next_values = critic(next_states, next_actions).squeeze()
td_targets = rewards + gamma * next_values * (1 - dones)
td_errors = td_targets - values
# 更新Critic网络
critic_optimizer.zero_grad()
critic_loss = torch.mean(td_errors ** 2)
critic_loss.backward()
critic_optimizer.step()
# 更新Actor网络
actor_optimizer.zero_grad()
policy_loss = -torch.mean(td_errors.detach() * critic(states, actions).squeeze()) # 使用detach()避免梯度传播到critic
policy_loss.backward()
actor_optimizer.step()
episodes.append(episode)
return episodes
# 主函数
if __name__ == '__main__':
env_name = "Pendulum-v1" # 使用Pendulum环境,需要安装gym
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
actor = Actor(state_dim, action_dim)
critic = Critic(state_dim, action_dim)
actor_optimizer = optim.Adam(actor.parameters(), lr=1e-3)
critic_optimizer = optim.Adam(critic.parameters(), lr=1e-3)
gamma = 0.99
num_processes = 4 # 进程数量
num_episodes_per_process = 10 # 每个进程采样的episode数量
processes = []
for i in range(num_processes):
# 为每个进程创建一个新的环境实例
env_process = gym.make(env_name)
# 创建一个本地actor和critic的副本
actor_process = Actor(state_dim, action_dim)
critic_process = Critic(state_dim, action_dim)
# 加载主actor和critic的参数
actor_process.load_state_dict(actor.state_dict())
critic_process.load_state_dict(critic.state_dict())
process = multiprocessing.Process(target=collect_samples, args=(actor_process, critic_process, env_process, num_episodes_per_process, gamma, actor_optimizer, critic_optimizer))
processes.append(process)
process.start()
for process in processes:
process.join()
print("Training complete!")
代码解释:
Actor和Critic类定义了策略网络和价值网络,使用了简单的全连接层。collect_samples函数负责与环境交互,收集样本,并计算TD误差,然后更新Actor和Critic网络。multiprocessing.Process创建多个进程,每个进程运行collect_samples函数。- 需要注意的是,在多进程中,每个进程都有自己独立的Actor和Critic网络副本。 为了简化,这里每个进程使用独立的optimizer,实际应用中,可以使用共享内存来更新主网络的参数,或者使用异步更新策略。
- 在启动每个进程时,我们首先创建了本地的Actor和Critic网络的副本,然后使用
load_state_dict方法将主网络的参数复制到副本。这样可以确保每个进程都从相同的初始参数开始训练。 - 每个进程完成后,其训练结果(梯度更新)并不会自动同步到主网络。你需要设计一种机制来合并这些梯度更新,例如使用共享内存或消息队列。
- 重要提示: 在实际应用中,直接在子进程中使用主进程的优化器(例如
actor_optimizer和critic_optimizer)通常是不安全的,因为它们可能不是进程安全的。更好的方法是让每个子进程计算梯度,然后将梯度发送回主进程,由主进程来更新主网络的参数。
2.2 使用torch.multiprocessing
PyTorch提供了torch.multiprocessing模块,可以更方便地进行并行计算。它支持共享内存,可以在多个进程之间共享Tensor。
import torch.multiprocessing as mp
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
# 定义Actor网络
class Actor(nn.Module):
def __init__(self, state_dim, action_dim):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, action_dim) # 假设动作是连续的
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
action = torch.tanh(self.fc3(x)) # 将动作限制在[-1, 1]
return action
# 定义Critic网络
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, 1)
def forward(self, state, action):
x = torch.cat([state, action], dim=1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
value = self.fc3(x)
return value
# 定义采样函数
def collect_samples(actor, critic, env, num_episodes, gamma, actor_optimizer, critic_optimizer, actor_state_dict, critic_state_dict, lock):
for _ in range(num_episodes):
state = env.reset()
episode = []
done = False
while not done:
state_tensor = torch.FloatTensor(state).unsqueeze(0)
# 使用共享内存中的网络参数
with lock:
actor.load_state_dict(actor_state_dict.copy())
action = actor(state_tensor).detach().numpy()[0]
next_state, reward, done, _ = env.step(action)
episode.append((state, action, reward, next_state, done))
state = next_state
# 计算TD误差并更新网络
states, actions, rewards, next_states, dones = zip(*episode)
states = torch.FloatTensor(np.array(states))
actions = torch.FloatTensor(np.array(actions))
rewards = torch.FloatTensor(np.array(rewards))
next_states = torch.FloatTensor(np.array(next_states))
dones = torch.FloatTensor(np.array(dones))
values = critic(states, actions).squeeze()
with lock:
actor.load_state_dict(actor_state_dict.copy())
next_actions = actor(next_states).detach()
next_values = critic(next_states, next_actions).squeeze()
td_targets = rewards + gamma * next_values * (1 - dones)
td_errors = td_targets - values
# 更新Critic网络
critic_optimizer.zero_grad()
critic_loss = torch.mean(td_errors ** 2)
critic_loss.backward()
critic_optimizer.step()
# 更新Actor网络
actor_optimizer.zero_grad()
policy_loss = -torch.mean(td_errors.detach() * critic(states, actions).squeeze()) # 使用detach()避免梯度传播到critic
policy_loss.backward()
actor_optimizer.step()
# 更新共享内存中的网络参数
with lock:
for k, v in actor.state_dict().items():
actor_state_dict[k] = v
for k, v in critic.state_dict().items():
critic_state_dict[k] = v
# 主函数
if __name__ == '__main__':
mp.set_start_method('spawn') # 强制使用'spawn'启动方法,避免共享内存问题
env_name = "Pendulum-v1" # 使用Pendulum环境,需要安装gym
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
actor = Actor(state_dim, action_dim)
critic = Critic(state_dim, action_dim)
# 将网络参数放入共享内存
actor_state_dict = mp.Manager().dict()
critic_state_dict = mp.Manager().dict()
for k, v in actor.state_dict().items():
actor_state_dict[k] = v
for k, v in critic.state_dict().items():
critic_state_dict[k] = v
actor_optimizer = optim.Adam(actor.parameters(), lr=1e-3)
critic_optimizer = optim.Adam(critic.parameters(), lr=1e-3)
gamma = 0.99
num_processes = 4 # 进程数量
num_episodes_per_process = 10 # 每个进程采样的episode数量
lock = mp.Lock() # 创建一个锁,用于同步对共享内存的访问
processes = []
for i in range(num_processes):
# 为每个进程创建一个新的环境实例
env_process = gym.make(env_name)
process = mp.Process(target=collect_samples, args=(actor, critic, env_process, num_episodes_per_process, gamma, actor_optimizer, critic_optimizer, actor_state_dict, critic_state_dict, lock))
processes.append(process)
process.start()
for process in processes:
process.join()
print("Training complete!")
代码解释:
- 使用了
mp.Manager().dict()创建共享字典,用于存储 Actor 和 Critic 网络的参数。 mp.Lock()创建一个锁,用于同步对共享内存的访问,避免数据竞争。- 每个进程在采样前,先从共享内存中加载最新的网络参数。
- 每个进程在更新网络后,将更新后的参数写入共享内存。
mp.set_start_method('spawn')强制使用 ‘spawn’ 启动方法。 在某些平台上,默认的启动方法(例如 ‘fork’)可能导致共享内存出现问题。 ‘spawn’ 方法会创建一个全新的 Python 进程,从而避免了这些问题。- 重要提示: 由于所有进程共享同一个优化器,这可能会导致不稳定的训练。 更安全的方法是每个进程计算梯度,然后将梯度发送回主进程,由主进程来更新主网络的参数。 可以使用
torch.distributed模块来实现分布式梯度更新。
2.3 使用Ray
Ray是一个通用的分布式计算框架,可以方便地实现并行采样。
import ray
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
# 定义Actor网络
class Actor(nn.Module):
def __init__(self, state_dim, action_dim):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, action_dim) # 假设动作是连续的
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
action = torch.tanh(self.fc3(x)) # 将动作限制在[-1, 1]
return action
# 定义Critic网络
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, 1)
def forward(self, state, action):
x = torch.cat([state, action], dim=1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
value = self.fc3(x)
return value
@ray.remote
class Worker:
def __init__(self, env_name):
self.env = gym.make(env_name)
self.actor = Actor(self.env.observation_space.shape[0], self.env.action_space.shape[0])
self.critic = Critic(self.env.observation_space.shape[0], self.env.action_space.shape[0])
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=1e-3)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=1e-3)
self.gamma = 0.99
def collect_samples(self, num_episodes):
episodes = []
for _ in range(num_episodes):
state = self.env.reset()
episode = []
done = False
while not done:
state_tensor = torch.FloatTensor(state).unsqueeze(0)
action = self.actor(state_tensor).detach().numpy()[0]
next_state, reward, done, _ = self.env.step(action)
episode.append((state, action, reward, next_state, done))
state = next_state
# 计算TD误差并更新网络
states, actions, rewards, next_states, dones = zip(*episode)
states = torch.FloatTensor(np.array(states))
actions = torch.FloatTensor(np.array(actions))
rewards = torch.FloatTensor(np.array(rewards))
next_states = torch.FloatTensor(np.array(next_states))
dones = torch.FloatTensor(np.array(dones))
values = self.critic(states, actions).squeeze()
next_actions = self.actor(next_states).detach()
next_values = self.critic(next_states, next_actions).squeeze()
td_targets = rewards + self.gamma * next_values * (1 - dones)
td_errors = td_targets - values
# 更新Critic网络
self.critic_optimizer.zero_grad()
critic_loss = torch.mean(td_errors ** 2)
critic_loss.backward()
self.critic_optimizer.step()
# 更新Actor网络
self.actor_optimizer.zero_grad()
policy_loss = -torch.mean(td_errors.detach() * self.critic(states, actions).squeeze()) # 使用detach()避免梯度传播到critic
policy_loss.backward()
self.actor_optimizer.step()
episodes.append(episode)
return episodes
def get_weights(self):
return self.actor.state_dict(), self.critic.state_dict()
def set_weights(self, actor_weights, critic_weights):
self.actor.load_state_dict(actor_weights)
self.critic.load_state_dict(critic_weights)
if __name__ == '__main__':
ray.init()
env_name = "Pendulum-v1" # 使用Pendulum环境,需要安装gym
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
actor = Actor(state_dim, action_dim)
critic = Critic(state_dim, action_dim)
actor_optimizer = optim.Adam(actor.parameters(), lr=1e-3)
critic_optimizer = optim.Adam(critic.parameters(), lr=1e-3)
gamma = 0.99
num_workers = 4
num_episodes_per_worker = 10
# 创建worker
workers = [Worker.remote(env_name) for _ in range(num_workers)]
# 初始化worker权重
actor_weights, critic_weights = actor.state_dict(), critic.state_dict()
for worker in workers:
worker.set_weights.remote(actor_weights, critic_weights)
# 并行采样
results = [worker.collect_samples.remote(num_episodes_per_worker) for worker in workers]
ray.wait(results)
# 获取worker权重并更新主网络
worker_weights = ray.get([worker.get_weights.remote() for worker in workers])
# 简单的平均权重更新
for i in range(len(actor_weights)):
actor_weights[list(actor_weights.keys())[i]] = torch.mean(torch.stack([w[0][list(actor_weights.keys())[i]] for w in worker_weights]),dim=0)
for i in range(len(critic_weights)):
critic_weights[list(critic_weights.keys())[i]] = torch.mean(torch.stack([w[1][list(critic_weights.keys())[i]] for w in worker_weights]),dim=0)
actor.load_state_dict(actor_weights)
critic.load_state_dict(critic_weights)
print("Training complete!")
ray.shutdown()
代码解释:
- 使用
@ray.remote装饰器将Worker类转换为一个 Ray Actor。 Worker类包含一个环境副本和 Actor-Critic 模型。collect_samples方法负责与环境交互,收集样本,并更新 Actor 和 Critic 网络。ray.init()初始化 Ray 集群。Worker.remote()创建一个远程 Actor 实例。worker.collect_samples.remote()异步调用collect_samples方法。ray.wait()等待所有任务完成。ray.get()获取任务结果。- 关键点:Ray Actor允许在独立的进程或机器上运行,并且可以异步地调用其方法。这使得我们可以轻松地实现并行采样。
3. 分布式梯度更新策略
在分布式环境中,每个agent计算的梯度需要进行聚合,然后更新全局网络。常见的分布式梯度更新策略包括:
- 同步更新: 所有agent将梯度发送到中心服务器,服务器聚合梯度后更新全局网络,然后将更新后的网络参数发送给所有agent。
- 异步更新: 每个agent独立计算梯度并更新全局网络,无需等待其他agent。
3.1 使用torch.distributed进行同步梯度更新
PyTorch提供了torch.distributed模块,可以方便地进行分布式训练。
import torch.distributed as dist
import torch.multiprocessing as mp
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
# 定义Actor网络
class Actor(nn.Module):
def __init__(self, state_dim, action_dim):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, action_dim) # 假设动作是连续的
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
action = torch.tanh(self.fc3(x)) # 将动作限制在[-1, 1]
return action
# 定义Critic网络
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, 1)
def forward(self, state, action):
x = torch.cat([state, action], dim=1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
value = self.fc3(x)
return value
def collect_samples(rank, world_size, actor, critic, env, num_episodes, gamma, actor_optimizer, critic_optimizer):
for _ in range(num_episodes):
state = env.reset()
episode = []
done = False
while not done:
state_tensor = torch.FloatTensor(state).unsqueeze(0)
action = actor(state_tensor).detach().numpy()[0]
next_state, reward, done, _ = env.step(action)
episode.append((state, action, reward, next_state, done))
state = next_state
# 计算TD误差并更新网络
states, actions, rewards, next_states, dones = zip(*episode)
states = torch.FloatTensor(np.array(states))
actions = torch.FloatTensor(np.array(actions))
rewards = torch.FloatTensor(np.array(rewards))
next_states = torch.FloatTensor(np.array(next_states))
dones = torch.FloatTensor(np.array(dones))
values = critic(states, actions).squeeze()
next_actions = actor(next_states).detach()
next_values = critic(next_states, next_actions).squeeze()
td_targets = rewards + gamma * next_values * (1 - dones)
td_errors = td_targets - values
# 更新Critic网络
critic_optimizer.zero_grad()
critic_loss = torch.mean(td_errors ** 2)
critic_loss.backward()
for param in critic.parameters():
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
param.grad.data /= world_size # 平均梯度
critic_optimizer.step()
# 更新Actor网络
actor_optimizer.zero_grad()
policy_loss = -torch.mean(td_errors.detach() * critic(states, actions).squeeze()) # 使用detach()避免梯度传播到critic
policy_loss.backward()
for param in actor.parameters():
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
param.grad.data /= world_size # 平均梯度
actor_optimizer.step()
def init_process(rank, world_size, fn, backend, env_name, num_episodes, gamma, learning_rate):
dist.init_process_group(backend, rank=rank, world_size=world_size)
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
actor = Actor(state_dim, action_dim)
critic = Critic(state_dim, action_dim)
actor_optimizer = optim.Adam(actor.parameters(), lr=learning_rate)
critic_optimizer = optim.Adam(critic.parameters(), lr=learning_rate)
fn(rank, world_size, actor, critic, env, num_episodes, gamma, actor_optimizer, critic_optimizer)
if __name__ == "__main__":
mp.set_start_method('spawn')
world_size = 4 # 使用的进程数量
env_name = "Pendulum-v1"
num_episodes = 10
gamma = 0.99
learning_rate = 1e-3
backend = 'gloo' # 可以选择 'gloo' 或 'nccl'
processes = []
for rank in range(world_size):
p = mp.Process(target=init_process, args=(rank, world_size, collect_samples, backend, env_name, num_episodes, gamma, learning_rate))
p.start()
processes.append(p)
for p in processes:
p.join()
print("Training complete!")
代码解释:
dist.init_process_group()初始化分布式环境。dist.all_reduce()将所有进程的梯度进行聚合(求和)。- 每个进程将聚合后的梯度除以进程数量,得到平均梯度。
- 所有进程使用平均梯度更新自己的网络参数。
- 重要提示:
torch.distributed需要正确配置分布式环境,例如设置RANK和WORLD_SIZE环境变量。 - backend可以选择
gloo或者nccl。gloo适合CPU,nccl适合GPU。 - 需要每个进程都执行相同的代码。
- 可以使用
torch.nn.parallel.DistributedDataParallel封装模型,简化分布式训练。
3.2 使用参数服务器进行异步梯度更新
参数服务器是一种常见的分布式训练架构。它包含一个中心服务器,负责存储和更新全局模型参数,以及多个worker节点,负责计算梯度并更新参数服务器上的模型参数。
由于直接实现参数服务器比较复杂,这里提供一个伪代码的示例,展示参数服务器的基本原理:
参数服务器 (Parameter Server):
# 参数服务器
class ParameterServer:
def __init__(self, model):
self.model = model
self.optimizer = optim.Adam(model.parameters(), lr=1e-3)
self.lock = threading.Lock() # 线程锁
def get_parameters(self):
with self.lock:
return [param.data.clone() for param in self.model.parameters()] # 返回模型参数的副本
def update_parameters(self, gradients):
with self.lock:
# 将梯度应用到模型参数
for param, grad in zip(self.model.parameters(), gradients):
param.grad = grad
self.optimizer.step()
self.optimizer.zero_grad() # 清空梯度
Worker节点 (Worker Node):
# Worker节点
def worker(parameter_server, env, model):
while True:
# 1. 从参数服务器获取最新的模型参数
parameters = parameter_server.get_parameters()
for param, server_param in zip(model.parameters(), parameters):
param.data = server_param.clone() # 使用服务器参数更新本地模型
# 2. 使用本地模型与环境交互,计算梯度
# (省略与环境交互和计算梯度的代码)
gradients = calculate_gradients(model, env) # 假设这是一个计算梯度的函数
# 3. 将梯度发送到参数服务器,更新模型参数
parameter_server.update_parameters(gradients)
代码解释:
- 参数服务器维护全局模型参数,并提供
get_parameters和update_parameters方法。 - Worker节点定期从参数服务器获取最新的模型参数,并使用这些参数与环境交互。
- Worker节点计算梯度后,将梯度发送到参数服务器,参数服务器使用这些梯度更新全局模型参数。
- 使用线程锁保证对模型参数的并发访问安全。
- 重要提示: 实际的参数服务器实现需要考虑更多的因素,例如梯度压缩、异步梯度更新、容错等。
4. Actor-Critic模型训练过程的表格总结
| 步骤 | Actor (策略网络) | Critic (价值网络) |
|---|---|---|
| 1. 采样 | 根据当前策略 π(a|s) 选择动作 a | / |
| 2. 评估 | / | 使用 TD 学习更新价值函数 V(s) 或 Q(s, a) |
| 3. 更新 | 使用 Critic 提供的价值估计作为反馈,调整策略 π(a|s) | / |
| 并行采样优化 | 多进程/多线程/Ray并行采样,加速数据收集 | / |
| 分布式梯度更新优化 | 同步/异步梯度聚合,更新全局网络参数 | 同步/异步梯度聚合,更新全局网络参数 |
5. 选择合适的策略:并行采样 vs. 分布式梯度更新
并行采样和分布式梯度更新是两种不同的策略,用于加速强化学习训练。
-
并行采样主要用于加速数据收集过程。它通过多个agent同时与环境交互,收集更多的训练数据。这对于那些数据收集成本较高的环境非常有用。
-
分布式梯度更新主要用于加速模型训练过程。它通过多个worker节点并行计算梯度,并将梯度聚合后更新全局模型参数。这对于那些模型较大、计算量较高的任务非常有用。
在实际应用中,可以根据具体的需求选择合适的策略。例如,如果环境交互成本较高,可以选择并行采样;如果模型较大、计算量较高,可以选择分布式梯度更新。 也可以将两种策略结合起来使用,以
更多IT精英技术系列讲座,到智猿学院