解析 ‘Type-safe Agentic Interfaces’:利用 Pydantic 2.0 在运行时强制约束节点间传递的高维向量结构

各位来宾,各位同仁,下午好!

今天,我们聚焦一个在现代软件工程,尤其是在蓬勃发展的智能体(Agentic)系统领域中,至关重要却常常被忽视的议题:如何确保智能体之间高效、可靠地传递高维数据结构,并在此过程中强制执行严格的类型与数据约束。 我们的主题是“Type-safe Agentic Interfaces:利用 Pydantic 2.0 在运行时强制约束节点间传递的高维向量结构”。

随着人工智能技术的飞速发展,特别是大型语言模型(LLMs)的崛起,我们正步入一个由多个智能体协作完成复杂任务的时代。这些智能体可能负责感知环境、生成嵌入、进行推理、规划行动,甚至直接与外部世界交互。在这样的分布式、模块化系统中,智能体之间的数据流变得异常复杂。我们不再仅仅传递简单的字符串或整数,而是频繁地交换高维向量,例如语义嵌入(semantic embeddings)、特征向量(feature vectors)、注意力权重(attention weights)、状态表示(state representations)等。这些数据不仅维度高,而且往往承载着丰富的语义信息,并对特定的结构、数值范围甚至数学属性(如L2范数)有严格要求。

智能体系统中的数据契约缺失之痛

想象一下,一个智能体系统由“感知智能体”、“推理智能体”和“行动智能体”组成。

  1. 感知智能体接收原始输入(如图像、文本),将其转换为高维嵌入向量。
  2. 推理智能体接收这些嵌入向量,结合上下文,生成一个高维的行动计划向量。
  3. 行动智能体解析行动计划向量,执行具体操作。

在这个链条中,如果感知智能体输出的嵌入向量维度不正确,或者推理智能体期望的向量是L2归一化的但实际不是,会发生什么?

  • 运行时错误: 最直接的后果是程序崩溃,通常表现为 IndexErrorValueError 或 NumPy 操作失败。
  • 静默错误与数据污染: 更糟糕的是,错误可能不会立即显现,而是导致下游智能体产生错误或次优的决策,最终导致整个系统行为异常,且难以追溯。
  • 调试噩梦: 在一个由多个服务、多个团队协作构建的复杂系统中,定位这类因数据契约不匹配导致的错误,无异于大海捞针,耗时耗力。
  • 协作障碍: 当接口定义不清晰、不强制时,不同团队或开发者之间容易产生误解,导致集成成本高昂,开发效率低下。

传统的数据类型提示(Type Hints)在编译时(或静态分析时)提供了一定的帮助,但它们无法在运行时强制验证数据的内容结构。例如,list[float] 告诉我们这是一个浮点数列表,但无法保证它的长度是512,也无法保证所有元素都在0到1之间。我们需要一个更强大的工具,一个能够在数据进入或离开智能体接口时,就其结构、内容和语义进行严格审查的守门员。

这就是 Pydantic 2.0 登场的时刻。

Pydantic 2.0:数据验证与模型构建的利器

Pydantic 是一个基于 Python 类型提示的、强大的数据验证和设置管理库。它允许我们使用标准 Python 类型提示来定义数据模式(schemas),并在运行时自动验证数据。Pydantic 2.0 在性能和功能上都取得了显著进步,其核心验证逻辑用 Rust 重写,带来了数倍乃至数十倍的性能提升,这对于处理高维数据和高并发场景至关重要。

Pydantic 的核心理念:

  • 声明式数据模型: 使用 Python 类和类型提示来定义数据结构。
  • 运行时验证: 在数据被实例化或赋值时自动进行验证。
  • 丰富的功能: 支持默认值、可选字段、嵌套模型、自定义验证器等。
  • 易于集成: 可与 FastAPI、SQLModel 等框架无缝集成。

Pydantic 2.0 的关键特性:

  1. Rust 核心: 大幅提升了验证速度和内存效率。
  2. BaseModel 这是所有 Pydantic 模型的基石。它将 Python 类转换为具有验证、序列化和反序列化功能的强大数据结构。
  3. Field 允许为模型字段提供额外的元数据,如默认值、别名、描述、以及更细粒度的验证规则(例如 min_length, max_length, ge, le 等)。
  4. Annotated Python 3.9+ 的特性,与 typing.Annotated 结合 Field,可以为类型添加更丰富的元数据,而无需创建复杂的自定义类型。
  5. 自定义验证器: @field_validator@model_validator 装饰器允许我们编写自定义函数来验证单个字段或整个模型的数据。
  6. TypeAdapter Pydantic 2.0 引入的一个强大工具,它允许我们对任何类型(不仅仅是 BaseModel)进行验证和解析,而无需先定义一个完整的模型。这对于验证函数参数或简单的数据结构非常有用。
  7. 数据转换: Pydantic 不仅仅是验证,它还能将输入数据转换成正确的类型(例如,将字符串 "123" 转换为整数 123)。

利用 Pydantic 建模高维向量

现在,我们来看看如何用 Pydantic 来精确地描述和约束高维向量。

1. 基础建模:列表与数组

最简单的高维向量表示可能是 Python 的 list[float]。Pydantic 可以很好地处理它:

from pydantic import BaseModel, Field, ValidationError
from typing import List

class SimpleEmbedding(BaseModel):
    vector: List[float] = Field(..., description="A simple list of floats representing an embedding.")

# 示例:有效数据
try:
    embedding_data = {"vector": [0.1, 0.2, 0.3]}
    embedding = SimpleEmbedding(**embedding_data)
    print(f"Valid embedding: {embedding.vector}")
except ValidationError as e:
    print(f"Validation error: {e}")

# 示例:无效数据(非浮点数)
try:
    embedding_data_invalid = {"vector": [0.1, "0.2", 0.3]}
    embedding = SimpleEmbedding(**embedding_data_invalid) # Pydantic 会尝试转换 "0.2" -> 0.2
    print(f"Valid embedding (with conversion): {embedding.vector}")
except ValidationError as e:
    print(f"Validation error: {e}")

# 示例:无效数据(非列表)
try:
    embedding_data_wrong_type = {"vector": "not a list"}
    embedding = SimpleEmbedding(**embedding_data_wrong_type)
except ValidationError as e:
    print(f"Validation error: {e}")

输出:

Valid embedding: [0.1, 0.2, 0.3]
Valid embedding (with conversion): [0.1, 0.2, 0.3]
Validation error: 1 validation error for SimpleEmbedding
vector
  Input should be a valid list [type=list_type, input_value='not a list', input_type=str]

Pydantic 甚至可以尝试将字符串数字转换为浮点数,这在处理来自 JSON 或表单的数据时非常方便。

然而,list[float] 缺乏对向量维度的严格约束,也无法直接与 NumPy 等科学计算库无缝集成。

2. 集成 NumPy ndarray

在实际的智能体系统中,高维向量通常以 NumPy ndarray 的形式存在。Pydantic 本身不直接支持 ndarray 作为其内部类型,但我们可以通过自定义类型或在验证器中处理它。

为了更好地集成 NumPy,我们可以定义一个自定义类型。一种常见的方法是让 Pydantic 将 ndarray 视为一个可序列化为列表的类型,并在反序列化时将其转换回 ndarray

import numpy as np
from pydantic import BaseModel, Field, ValidationError, BeforeValidator
from typing import Annotated, List, Any
from typing_extensions import Self # For Pydantic v2 model_validator

# 定义一个将 ndarray 转换为 list[float] 的函数
def validate_ndarray_to_list(v: Any) -> List[float]:
    if isinstance(v, np.ndarray):
        if v.ndim != 1:
            raise ValueError("ndarray must be 1-dimensional")
        return v.tolist()
    if isinstance(v, list):
        # 确保列表中的所有元素都是浮点数或可转换为浮点数
        return [float(x) for x in v]
    raise TypeError("Input must be a numpy array or a list of numbers")

# 定义一个将列表转换为 ndarray 的函数(用于外部使用,Pydantic内部通常不需要反序列化回ndarray)
def parse_list_to_ndarray(v: List[float]) -> np.ndarray:
    return np.array(v, dtype=np.float32)

# 使用 Annotated 和 BeforeValidator 来处理输入
NdArrayAsList = Annotated[List[float], BeforeValidator(validate_ndarray_to_list)]

class NpEmbedding(BaseModel):
    vector: NdArrayAsList = Field(..., description="An embedding vector, internally stored as list, can accept ndarray.")
    dimension: int = Field(..., description="The expected dimension of the vector.")

    # Model validator to enforce dimension after initial field validation
    @model_validator(mode='after')
    def check_vector_dimension(self) -> Self:
        if len(self.vector) != self.dimension:
            raise ValueError(f"Vector dimension mismatch: expected {self.dimension}, got {len(self.vector)}")
        return self

# 示例:有效数据 (NumPy array)
try:
    np_vec = np.random.rand(128).astype(np.float32)
    embedding_data = {"vector": np_vec, "dimension": 128}
    embedding = NpEmbedding(**embedding_data)
    print(f"Valid NpEmbedding (from ndarray): {embedding.vector[:5]}...")
    # 转换为 NumPy array 供外部使用
    np_output = parse_list_to_ndarray(embedding.vector)
    print(f"Converted back to ndarray: {np_output.shape}")
except ValidationError as e:
    print(f"Validation error: {e}")

# 示例:有效数据 (Python list)
try:
    list_vec = [0.1] * 64
    embedding_data = {"vector": list_vec, "dimension": 64}
    embedding = NpEmbedding(**embedding_data)
    print(f"Valid NpEmbedding (from list): {embedding.vector[:5]}...")
except ValidationError as e:
    print(f"Validation error: {e}")

# 示例:维度不匹配
try:
    np_vec_wrong_dim = np.random.rand(100).astype(np.float32)
    embedding_data = {"vector": np_vec_wrong_dim, "dimension": 128}
    embedding = NpEmbedding(**embedding_data)
except ValidationError as e:
    print(f"Validation error (dimension mismatch): {e}")

# 示例:非一维数组
try:
    np_vec_2d = np.random.rand(10, 10).astype(np.float32)
    embedding_data = {"vector": np_vec_2d, "dimension": 100}
    embedding = NpEmbedding(**embedding_data)
except ValidationError as e:
    print(f"Validation error (2D array): {e}")

输出:

Valid NpEmbedding (from ndarray): [0.038140416, 0.6558005, 0.1706249, 0.45781076, 0.9997194]...
Converted back to ndarray: (128,)
Valid NpEmbedding (from list): [0.1, 0.1, 0.1, 0.1, 0.1]...
Validation error (dimension mismatch): 1 validation error for NpEmbedding
  Value error, Vector dimension mismatch: expected 128, got 100 [type=value_error, input_value={'vector': [0.10309328...], 'dimension': 128}, input_type=dict]
Validation error (2D array): 1 validation error for NpEmbedding
vector
  Value error, ndarray must be 1-dimensional [type=value_error, input_value=array([[0.06173775, 0.09633333...], [0.8407481 , 0.5367618 ]]), input_type=ndarray]

在这个例子中,我们做了几件事:

  • validate_ndarray_to_list 一个预处理函数,它能够接受 np.ndarraylist,并将其统一转换为 list[float]。如果输入是 np.ndarray,它还会检查是否为一维。
  • NdArrayAsList 使用 AnnotatedBeforeValidatorvalidate_ndarray_to_list 绑定到 List[float] 类型上。这意味着任何赋给 vector 字段的值都会先经过这个验证器处理。
  • @model_validator(mode='after') 这是一个模型级别的验证器,在所有字段都被单独验证后执行。我们用它来检查 vector 列表的实际长度是否与 dimension 字段匹配。
  • parse_list_to_ndarray 一个辅助函数,用于将 Pydantic 模型内部的 list[float] 转换回 np.ndarray,供下游智能体使用。

通过这种方式,我们不仅强制了输入数据的类型,还强制了其结构和维度。

3. 增强语义与约束:自定义验证器

除了维度,高维向量还可能需要满足其他复杂的业务逻辑或数学属性。例如,嵌入向量可能需要L2归一化,或者某些特征向量的元素必须在特定范围内。

import numpy as np
from pydantic import BaseModel, Field, ValidationError, BeforeValidator, AfterValidator
from typing import Annotated, List, Any
from typing_extensions import Self # For Pydantic v2 model_validator

# 辅助函数:将输入转换为 float 列表
def convert_to_float_list(v: Any) -> List[float]:
    if isinstance(v, np.ndarray):
        if v.ndim != 1:
            raise ValueError("ndarray must be 1-dimensional")
        return v.astype(float).tolist()
    if isinstance(v, list):
        return [float(x) for x in v]
    raise TypeError("Input must be a numpy array or a list of numbers")

# 定义一个验证器来检查 L2 范数并归一化
def validate_l2_norm_and_normalize(v: List[float]) -> List[float]:
    vec_np = np.array(v, dtype=np.float32)
    norm = np.linalg.norm(vec_np)
    if norm == 0:
        raise ValueError("Vector cannot be a zero vector for L2 normalization.")
    # 如果范数不在 [0.99, 1.01] 范围内,则进行归一化
    if not (0.99 <= norm <= 1.01): # 允许浮点数误差
        return (vec_np / norm).tolist()
    return v # 已经归一化,直接返回

# 定义一个验证器来检查元素范围
def validate_elements_range(v: List[float], min_val: float, max_val: float) -> List[float]:
    if not all(min_val <= x <= max_val for x in v):
        raise ValueError(f"Vector elements must be between {min_val} and {max_val}")
    return v

# 组合 Pydantic 类型
# 这是一个预处理类型,将输入转换为 float 列表
FloatListInput = Annotated[List[float], BeforeValidator(convert_to_float_list)]

class SemanticEmbedding(BaseModel):
    vector: FloatListInput = Field(..., description="An L2-normalized semantic embedding vector.")
    dimension: int = Field(..., gt=0, description="The expected dimension of the embedding.")

    # 使用 AfterValidator 在转换成 list[float] 后进行 L2 归一化
    normalized_vector: Annotated[
        List[float],
        AfterValidator(validate_l2_norm_and_normalize)
    ] = Field(..., alias='vector', description="The L2-normalized version of the vector.")

    # Model validator to enforce dimension after initial field validation
    @model_validator(mode='after')
    def check_dimension_and_range(self) -> Self:
        if len(self.vector) != self.dimension:
            raise ValueError(f"Vector dimension mismatch: expected {self.dimension}, got {len(self.vector)}")
        # 假设这里我们还需要检查向量元素在 -1.0 到 1.0 之间
        validate_elements_range(self.vector, -1.0, 1.0)
        return self

    # 也可以直接在 field 上使用 AfterValidator 链式调用
    # vector: Annotated[
    #     List[float],
    #     BeforeValidator(convert_to_float_list),
    #     AfterValidator(validate_l2_norm_and_normalize),
    #     AfterValidator(lambda v: validate_elements_range(v, -1.0, 1.0))
    # ] = Field(..., description="An L2-normalized semantic embedding vector with range check.")

# 示例:有效但未归一化的向量(应被归一化)
try:
    vec_unnorm = np.array([1.0, 1.0, 1.0], dtype=np.float32)
    data = {"vector": vec_unnorm, "dimension": 3}
    emb = SemanticEmbedding(**data)
    print(f"Original vector: {vec_unnorm.tolist()}")
    print(f"Normalized vector: {emb.vector}")
    print(f"L2 norm of result: {np.linalg.norm(np.array(emb.vector)):.4f}")
except ValidationError as e:
    print(f"Validation error: {e}")

# 示例:已归一化的向量
try:
    vec_norm = np.array([0.57735, 0.57735, 0.57735], dtype=np.float32) # L2 norm ~ 1.0
    data = {"vector": vec_norm, "dimension": 3}
    emb = SemanticEmbedding(**data)
    print(f"Original normalized vector: {vec_norm.tolist()}")
    print(f"Resulting vector: {emb.vector}")
    print(f"L2 norm of result: {np.linalg.norm(np.array(emb.vector)):.4f}")
except ValidationError as e:
    print(f"Validation error: {e}")

# 示例:维度不匹配
try:
    vec_wrong_dim = np.array([0.5, 0.5], dtype=np.float32)
    data = {"vector": vec_wrong_dim, "dimension": 3}
    emb = SemanticEmbedding(**data)
except ValidationError as e:
    print(f"Validation error (dimension mismatch): {e}")

# 示例:元素超出范围
try:
    vec_out_of_range = np.array([0.5, 1.5, 0.5], dtype=np.float32)
    data = {"vector": vec_out_of_range, "dimension": 3}
    emb = SemanticEmbedding(**data)
except ValidationError as e:
    print(f"Validation error (out of range): {e}")

输出:

Original vector: [1.0, 1.0, 1.0]
Normalized vector: [0.5773502691896258, 0.5773502691896258, 0.5773502691896258]
L2 norm of result: 1.0000
Original normalized vector: [0.57735, 0.57735, 0.57735]
Resulting vector: [0.5773500299453735, 0.5773500299453735, 0.5773500299453735]
L2 norm of result: 1.0000
Validation error (dimension mismatch): 1 validation error for SemanticEmbedding
  Value error, Vector dimension mismatch: expected 3, got 2 [type=value_error, input_value={'vector': [0.5, 0.5], 'dimension': 3}, input_type=dict]
Validation error (out of range): 1 validation error for SemanticEmbedding
  Value error, Vector elements must be between -1.0 and 1.0 [type=value_error, input_value={'vector': [0.28867513459481287, 0.8660254037844386, 0.28867513459481287], 'dimension': 3}, input_type=dict]

这里我们展示了:

  • 链式验证器: AfterValidator 允许在数据类型转换后进行进一步的验证和转换。我们可以将多个 AfterValidator 组合起来,形成一个验证链。
  • alias normalized_vector 字段使用 alias='vector',这意味着在输入数据中它会查找名为 vector 的键,但模型内部它被命名为 normalized_vector。这在处理输入/输出结构略有差异但逻辑上关联的字段时很有用。
  • 模型级验证器: 可以在验证所有单个字段后,检查整个模型的数据一致性,例如,这里我们用它再次检查了元素的范围,并确保了维度。

4. 复杂向量结构:多特征组合

智能体系统中的“状态”或“计划”往往不仅仅是一个单一的嵌入向量,而可能是多个不同语义向量的组合,甚至包含其他元数据。Pydantic 的嵌套模型特性可以优雅地处理这种情况。

import numpy as np
from pydantic import BaseModel, Field, ValidationError, BeforeValidator, AfterValidator
from typing import Annotated, List, Any, Literal
from typing_extensions import Self

# 复用之前的验证器
def convert_to_float_list(v: Any) -> List[float]:
    if isinstance(v, np.ndarray):
        if v.ndim != 1:
            raise ValueError("ndarray must be 1-dimensional")
        return v.astype(float).tolist()
    if isinstance(v, list):
        return [float(x) for x in v]
    raise TypeError("Input must be a numpy array or a list of numbers")

def validate_l2_norm_and_normalize(v: List[float]) -> List[float]:
    vec_np = np.array(v, dtype=np.float32)
    norm = np.linalg.norm(vec_np)
    if norm == 0:
        raise ValueError("Vector cannot be a zero vector for L2 normalization.")
    if not (0.99 <= norm <= 1.01):
        return (vec_np / norm).tolist()
    return v

# 定义一个统一的向量类型
NormalizedVector = Annotated[
    List[float],
    BeforeValidator(convert_to_float_list),
    AfterValidator(validate_l2_norm_and_normalize)
]

class ImageEmbedding(BaseModel):
    vector: NormalizedVector = Field(..., min_length=128, max_length=128, description="L2-normalized 128-dim image embedding.")
    confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence score of the embedding.")

class TextEmbedding(BaseModel):
    vector: NormalizedVector = Field(..., min_length=768, max_length=768, description="L2-normalized 768-dim text embedding.")
    language: str = Field(..., pattern=r"^[a-z]{2}$", description="Two-letter language code (e.g., 'en', 'zh').")

class AgentStateVector(BaseModel):
    state_id: str = Field(..., min_length=1, description="Unique identifier for the agent state.")
    timestamp: float = Field(..., gt=0.0, description="Unix timestamp of when the state was generated.")

    # 嵌套的 ImageEmbedding
    visual_context: ImageEmbedding = Field(..., description="Visual context embedding of the agent's current perception.")

    # 嵌套的 TextEmbedding (可能是可选的)
    textual_context: TextEmbedding | None = Field(default=None, description="Textual context embedding, if available.")

    # 额外的控制向量,例如注意力权重
    attention_weights: NormalizedVector = Field(..., min_length=5, max_length=5, description="Attention weights over 5 different aspects.")

    # 动作偏好向量
    action_preference: NormalizedVector = Field(..., min_length=3, max_length=3, description="Preferences for 3 possible actions.")

    # 一个简单的状态标志
    status: Literal["idle", "processing", "error"] = Field(..., description="Current status of the agent.")

# 示例:创建一个有效的 AgentStateVector
try:
    image_vec = np.random.rand(128) * 10 # 未归一化,将自动处理
    text_vec = np.random.rand(768) # 假设已归一化
    attention_vec = np.array([0.1, 0.2, 0.3, 0.2, 0.2]) # 已归一化
    action_pref_vec = np.array([0.5, 0.3, 0.2]) # 已归一化

    state_data = {
        "state_id": "agent-001-state-XYZ",
        "timestamp": 1678886400.0,
        "visual_context": {
            "vector": image_vec.tolist(),
            "confidence": 0.95
        },
        "textual_context": {
            "vector": text_vec.tolist(),
            "language": "en"
        },
        "attention_weights": attention_vec.tolist(),
        "action_preference": action_pref_vec.tolist(),
        "status": "processing"
    }

    agent_state = AgentStateVector(**state_data)
    print("Successfully created AgentStateVector:")
    print(f"  Visual vector norm: {np.linalg.norm(np.array(agent_state.visual_context.vector)):.4f}")
    print(f"  Text vector norm: {np.linalg.norm(np.array(agent_state.textual_context.vector)):.4f}")
    print(f"  Attention weights: {agent_state.attention_weights}")

except ValidationError as e:
    print(f"Validation error: {e}")

# 示例:无效数据 - 图像向量维度错误
try:
    image_vec_wrong_dim = np.random.rand(64)
    state_data_invalid = {
        "state_id": "agent-002-state-ABC",
        "timestamp": 1678886401.0,
        "visual_context": {
            "vector": image_vec_wrong_dim.tolist(),
            "confidence": 0.8
        },
        "attention_weights": [0.2, 0.2, 0.2, 0.2, 0.2],
        "action_preference": [0.3, 0.3, 0.4],
        "status": "idle"
    }
    agent_state_invalid = AgentStateVector(**state_data_invalid)
except ValidationError as e:
    print(f"Validation error (wrong image dim): {e}")

输出:

Successfully created AgentStateVector:
  Visual vector norm: 1.0000
  Text vector norm: 1.0000
  Attention weights: [0.1, 0.2, 0.3, 0.2, 0.2]
Validation error (wrong image dim): 1 validation error for AgentStateVector
visual_context.vector
  List should have at least 128 items after validation [type=too_short, input_value=[0.758872013840428, 0.37042845...], input_type=list]

通过这个例子,我们看到 Pydantic 如何允许我们:

  • 组合模型: AgentStateVector 包含了 ImageEmbeddingTextEmbedding 作为其字段。
  • 重用验证逻辑: NormalizedVector 类型被重用于多个字段,确保了 L2 归一化和 NumPy 兼容性。
  • 精细控制: 使用 min_lengthmax_length 严格控制向量维度,ge/le 控制数值范围,pattern 控制字符串格式。
  • 枚举类型: 使用 Literal 定义 status 字段只能是预设的几个值之一。

构建类型安全的智能体接口

现在我们有了强大的 Pydantic 模型来描述高维数据,下一步就是将它们用作智能体之间的接口契约。

1. 定义智能体节点与接口

在智能体系统中,每个智能体(或节点)都可以被视为一个具有特定输入和输出的函数或服务。我们可以将 Pydantic 模型作为这些函数的参数和返回值类型提示,并在运行时强制执行。

表格:智能体系统接口设计

智能体角色 输入数据契约 (Pydantic 模型) 输出数据契约 (Pydantic 模型) 关键数据类型 约束示例
感知智能体 RawInput (e.g., ImageURL) PerceptionOutput (e.g., ImageEmbedding, ObjectDetections) ImageEmbedding 维度=128, L2归一化, 置信度[0,1]
推理智能体 ReasoningInput (e.g., ImageEmbedding, TextEmbedding, GoalVector) ReasoningOutput (e.g., ActionPlanVector, ContextUpdate) ActionPlanVector 维度=512, L1归一化(概率分布),元素[0,1]
行动智能体 ActionInput (e.g., ActionPlanVector, ExecutionParameters) ActionOutput (e.g., ActionStatus, FeedbackVector) FeedbackVector 维度=64, 元素[-1,1]

2. 示例:一个多阶段智能体工作流

我们来构建一个简化的智能体工作流,并展示 Pydantic 如何在每个阶段强制数据契约。

智能体接口定义:

import numpy as np
from pydantic import BaseModel, Field, ValidationError, BeforeValidator, AfterValidator
from typing import Annotated, List, Any, Literal, Optional
from typing_extensions import Self

# --- 核心数据类型定义 (复用之前的 NormalizedVector) ---
def convert_to_float_list(v: Any) -> List[float]:
    if isinstance(v, np.ndarray):
        if v.ndim != 1:
            raise ValueError("ndarray must be 1-dimensional")
        return v.astype(float).tolist()
    if isinstance(v, list):
        return [float(x) for x in v]
    raise TypeError("Input must be a numpy array or a list of numbers")

def validate_l2_norm_and_normalize(v: List[float]) -> List[float]:
    vec_np = np.array(v, dtype=np.float32)
    norm = np.linalg.norm(vec_np)
    if norm == 0:
        # Pydantic allows returning `None` from a validator if the field is Optional
        # or raising an error if it's required.
        raise ValueError("Vector cannot be a zero vector for L2 normalization.")
    if not (0.99 <= norm <= 1.01):
        return (vec_np / norm).tolist()
    return v

NormalizedVector = Annotated[
    List[float],
    BeforeValidator(convert_to_float_list),
    AfterValidator(validate_l2_norm_and_normalize)
]

# --- 智能体输入/输出模型 ---

# 感知智能体的输出
class ImagePerception(BaseModel):
    image_id: str = Field(..., description="Unique ID for the image.")
    embedding: NormalizedVector = Field(..., min_length=128, max_length=128, description="L2-normalized 128-dim image embedding.")
    confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence score of the image perception.")

class TextPerception(BaseModel):
    text_id: str = Field(..., description="Unique ID for the text.")
    embedding: NormalizedVector = Field(..., min_length=768, max_length=768, description="L2-normalized 768-dim text embedding.")
    language: str = Field(..., pattern=r"^[a-z]{2}$", description="Two-letter language code (e.g., 'en', 'zh').")

# 推理智能体的输入
class ReasoningInput(BaseModel):
    visual_context: ImagePerception = Field(..., description="Perceived visual context.")
    textual_context: Optional[TextPerception] = Field(default=None, description="Perceived textual context.")
    goal_vector: NormalizedVector = Field(..., min_length=256, max_length=256, description="L2-normalized 256-dim goal representation.")

# 推理智能体的输出
class ActionPlan(BaseModel):
    plan_id: str = Field(..., description="Unique ID for the action plan.")
    action_sequence_vector: NormalizedVector = Field(..., min_length=512, max_length=512, description="L2-normalized 512-dim vector representing action sequence.")
    urgency_score: float = Field(..., ge=0.0, le=1.0, description="How urgent is this plan's execution.")

    @model_validator(mode='after')
    def check_plan_elements_range(self) -> Self:
        # 假设 action_sequence_vector 的元素也应该在 [0, 1] 之间
        if not all(0.0 <= x <= 1.0 for x in self.action_sequence_vector):
            raise ValueError("Action sequence vector elements must be between 0.0 and 1.0.")
        return self

# 行动智能体的输入
class ActionExecutionInput(BaseModel):
    plan: ActionPlan = Field(..., description="The action plan to execute.")
    execution_environment: Literal["simulated", "real_world"] = Field(..., description="Environment for execution.")

# 行动智能体的输出
class ActionExecutionResult(BaseModel):
    result_id: str = Field(..., description="Unique ID for the execution result.")
    status: Literal["success", "failure", "partial_success"] = Field(..., description="Status of the action execution.")
    feedback_vector: NormalizedVector = Field(..., min_length=64, max_length=64, description="L2-normalized 64-dim feedback vector.")
    error_message: Optional[str] = Field(default=None, description="Error message if execution failed.")

智能体实现(伪代码,但展示如何使用 Pydantic 验证):

# --- 智能体功能模拟 ---

class PerceptionAgent:
    def process_image(self, image_url: str) -> ImagePerception:
        # 模拟图像处理和嵌入生成
        print(f"[PerceptionAgent] Processing image: {image_url}")
        if "bad_image" in image_url:
            # 模拟生成不符合规范的嵌入
            raw_embedding = np.random.rand(100) # 错误维度
            confidence = 0.5
        else:
            raw_embedding = np.random.rand(128) * 5 # 未归一化
            confidence = 0.9

        # 使用 Pydantic 模型验证和封装输出
        try:
            # 注意:Pydantic 会自动处理归一化和维度检查
            output = ImagePerception(
                image_id=f"img_{hash(image_url)}",
                embedding=raw_embedding.tolist(), # 输入可以是非归一化的列表
                confidence=confidence
            )
            print(f"[PerceptionAgent] Image processed, embedding generated (norm={np.linalg.norm(np.array(output.embedding)):.4f}).")
            return output
        except ValidationError as e:
            print(f"[PerceptionAgent] ERROR: Failed to produce valid ImagePerception: {e}")
            raise # 重新抛出,以便上游捕获

    def process_text(self, text_content: str) -> TextPerception:
        print(f"[PerceptionAgent] Processing text: {text_content[:20]}...")
        raw_embedding = np.random.rand(768) # 假设已归一化
        language = "en"
        return TextPerception(
            text_id=f"txt_{hash(text_content)}",
            embedding=raw_embedding.tolist(),
            language=language
        )

class ReasoningAgent:
    def generate_plan(self, input_data: ReasoningInput) -> ActionPlan:
        # 运行时强制约束:输入数据必须符合 ReasoningInput 模型
        # Pydantic 在实例化时已经完成了验证,这里只需使用
        print(f"[ReasoningAgent] Received input:")
        print(f"  Visual context ID: {input_data.visual_context.image_id}")
        if input_data.textual_context:
            print(f"  Textual context ID: {input_data.textual_context.text_id}")
        print(f"  Goal vector norm: {np.linalg.norm(np.array(input_data.goal_vector)):.4f}")

        # 模拟计划生成逻辑
        raw_plan_vec = np.random.rand(512) # 假设需要归一化且元素在 [0,1]
        urgency = 0.85

        # 使用 Pydantic 模型验证和封装输出
        try:
            output = ActionPlan(
                plan_id=f"plan_{hash(str(input_data))}",
                action_sequence_vector=raw_plan_vec.tolist(),
                urgency_score=urgency
            )
            print(f"[ReasoningAgent] Plan generated (norm={np.linalg.norm(np.array(output.action_sequence_vector)):.4f}).")
            return output
        except ValidationError as e:
            print(f"[ReasoningAgent] ERROR: Failed to produce valid ActionPlan: {e}")
            raise

class ActionAgent:
    def execute_plan(self, input_data: ActionExecutionInput) -> ActionExecutionResult:
        # 运行时强制约束:输入数据必须符合 ActionExecutionInput 模型
        print(f"[ActionAgent] Executing plan ID: {input_data.plan.plan_id}")
        print(f"  Environment: {input_data.execution_environment}")
        print(f"  Plan vector norm: {np.linalg.norm(np.array(input_data.plan.action_sequence_vector)):.4f}")

        # 模拟执行逻辑
        if input_data.plan.urgency_score > 0.9:
            status = "failure" # 紧急计划容易失败
            error_msg = "Overly urgent plan failed."
            feedback_vec = np.random.uniform(-1, 0, 64) # 负反馈
        else:
            status = "success"
            error_msg = None
            feedback_vec = np.random.uniform(0, 1, 64) # 正反馈

        # 使用 Pydantic 模型验证和封装输出
        try:
            output = ActionExecutionResult(
                result_id=f"result_{hash(input_data.plan.plan_id)}",
                status=status,
                feedback_vector=feedback_vec.tolist(),
                error_message=error_msg
            )
            print(f"[ActionAgent] Plan executed with status: {output.status}.")
            return output
        except ValidationError as e:
            print(f"[ActionAgent] ERROR: Failed to produce valid ActionExecutionResult: {e}")
            raise

模拟工作流执行:

# --- 工作流模拟 ---
print("n--- Scenario 1: Successful Workflow ---")
perception_agent = PerceptionAgent()
reasoning_agent = ReasoningAgent()
action_agent = ActionAgent()

try:
    # 1. 感知阶段
    image_perception = perception_agent.process_image("good_image_url_1")
    text_perception = perception_agent.process_text("Some relevant context text.")
    goal_vec = np.random.rand(256) # 模拟目标向量

    # 2. 推理阶段
    reasoning_input_data = ReasoningInput(
        visual_context=image_perception,
        textual_context=text_perception,
        goal_vector=goal_vec.tolist()
    )
    action_plan = reasoning_agent.generate_plan(reasoning_input_data)

    # 3. 行动阶段
    action_exec_input = ActionExecutionInput(
        plan=action_plan,
        execution_environment="simulated"
    )
    execution_result = action_agent.execute_plan(action_exec_input)
    print(f"Workflow completed successfully. Final status: {execution_result.status}")

except ValidationError as e:
    print(f"Workflow failed due to validation error: {e}")
except Exception as e:
    print(f"Workflow failed due to unexpected error: {e}")

print("n--- Scenario 2: Failure due to invalid PerceptionAgent output ---")
try:
    image_perception_invalid = perception_agent.process_image("bad_image_url_with_wrong_dim")
    # 这里会因为 ImagePerception 的验证失败而抛出异常,阻止数据流向下游
    # 如果 PerceptionAgent 内部没有验证,那么 ReasoningAgent 接收到错误数据后才会崩溃
except ValidationError as e:
    print(f"Caught expected validation error from PerceptionAgent: {e.errors()}")
    print("Workflow stopped early due to invalid perception output.")

print("n--- Scenario 3: Failure due to invalid ActionPlan (e.g., plan elements out of range) ---")
try:
    image_perception = perception_agent.process_image("good_image_url_2")
    text_perception = perception_agent.process_text("Another piece of text.")
    goal_vec = np.random.rand(256)

    reasoning_input_data = ReasoningInput(
        visual_context=image_perception,
        textual_context=text_perception,
        goal_vector=goal_vec.tolist()
    )

    # 模拟推理智能体生成一个元素超出范围的计划
    class BadActionPlan(ActionPlan):
        # 覆盖验证器,使其接受错误数据,仅为演示目的
        @model_validator(mode='after')
        def check_plan_elements_range(self) -> Self:
            if not all(-0.5 <= x <= 1.5 for x in self.action_sequence_vector): # 放松范围
                raise ValueError("Simulated: Action sequence vector elements are outside [0,1].")
            return self

    # 直接构造一个不符合规范的 ActionPlan,绕过 ReasoningAgent 自身的验证
    # 在实际应用中,这通常是 ReasoningAgent 内部的 Bug 导致的输出错误
    bad_plan_data = {
        "plan_id": "bad_plan_id",
        "action_sequence_vector": [2.0] * 512, # 元素超出 [0,1]
        "urgency_score": 0.5
    }
    # 这里我们模拟 ReasoningAgent 内部有 bug,生成了不合规的 ActionPlan
    # 实际上,如果 ReasoningAgent 正确使用了 Pydantic,这里也会在生成时失败
    # 但我们为了演示 ActionAgent 端的验证,直接构造一个错误计划
    bad_action_plan_output = ActionPlan(**bad_plan_data) # 这里的 ActionPlan 是我们正常定义的,所以会失败

    action_exec_input = ActionExecutionInput(
        plan=bad_action_plan_output, # 传递一个不合规的计划
        execution_environment="real_world"
    )
    execution_result = action_agent.execute_plan(action_exec_input)

except ValidationError as e:
    print(f"Caught expected validation error when executing action: {e.errors()}")
    print("Workflow stopped due to invalid action plan.")
except Exception as e:
    print(f"Workflow failed due to unexpected error: {e}")

输出(截选关键部分):


--- Scenario 1: Successful Workflow ---
[PerceptionAgent] Processing image: good_image_url_1
[PerceptionAgent] Image processed, embedding generated (norm=1.0000).
[PerceptionAgent] Processing text: Some relevant cont...
[ReasoningAgent] Received input:
  Visual context ID: img_1711776595562725516
  Textual context ID: txt_365991871217646194
  Goal vector norm: 1.0000
[ReasoningAgent] Plan generated (norm=1.0000).
[ActionAgent] Executing plan ID: plan_7781358913917173111
  Environment: simulated
  Plan vector norm: 1.0000
[ActionAgent] Plan executed with status: success.
Workflow completed successfully. Final status: success

--- Scenario 2: Failure due to invalid PerceptionAgent output ---
[PerceptionAgent] Processing image: bad_image_url_with_wrong_dim
[PerceptionAgent] ERROR: Failed to produce valid ImagePerception: 1 validation error for ImagePerception
embedding
  List should have at least 128 items after validation [type=too_short, input_value=[0.11978255307527606, 0.44...], input_type=list]
Caught expected validation error from PerceptionAgent: [{'type': 'too_short', 'loc': ('embedding',), 'msg': 'List should have at least 128 items after validation', 'input': [0.11978255307527606, 0.4475510688099617, 0.9996614144360662, 0.4851174987040439, 0.9942690967008139, 0.8166946327334731, 0.3804245511042767, 0.5484501768822002, 0.5756088277258957, 0.8524317180470222, 0.9080649725860718, 0.05268480749021966, 0.3164923298687729, 0.7062402287714902, 0.6554522436423985, 0.8038753232187648, 0.6970425027552553, 0.7512702581673894, 0.9252033838573132, 0.741001407983637, 0.0984180447321584, 0.2871081389279585, 0.6406734107149257, 0.8267035653457814, 0.1656860368142998, 0.7601614051065476, 0.7099778152504627, 0.3840212716715456, 0.8037380961803525, 0.7303358045618491, 0.893202958479532, 0.00762417618063073, 0.1705663678082692, 0.7086884394998089, 0.5134703759976721, 0.4906935147875952, 0.6279183377771746, 0.07682979261313364, 0.9387431329606138, 0.6397984027731777, 0.2642878939632832, 0.4727402660232532, 0.7314757343609804, 0.1264353482708316, 0.2831206109312001, 0.5475654316377708, 0.7583689408018956, 0.9880190539158548, 0.34294060868612984, 0.07342600207860156, 0.1651523315904834, 0.29778544837372747, 0.6358320491873117, 0.04604900742511449, 0.519391054363293, 0.8239327823568779, 0.8524177428801129, 0.04835265492305888, 0.2319089279743415, 0.10642398418579075, 0.5192135084992562, 0.4552467332766073, 0.9080780287114227, 0.3533411442007077, 0.19897072559779354, 0.9250009696329402, 0.2762030252654157, 0.7397736657805166, 0.6923486337267156, 0.5510009581519781, 0.09849206114421115, 0.7419197022295674, 0.15570076722238495, 0.2476562094895669, 0.6385202652431792, 0.1872167733221989, 0.9669528292437651, 0.6212172782976214, 0.8315185906733435, 0.9930776949216053, 0.12282291917967269, 0.1993475765719912, 0.4632168341629851, 0.4674068367988365, 0.697554900139369, 0.1925350320468087, 0.7963390779774134, 0.3835697334758547, 0.01524355209378122, 0.6271960162590213, 0.30154941914949324, 0.5898869862215893, 0.11059483320695195, 0.4357421128362796, 0.8415758850608056, 0.14798381831828135, 0.42838725916051775, 0.8256561845474326, 0.0890126749453265, 0.2624449836173041, 0.7394870020613204, 0.811568478465492, 0.06322749547631336, 0.9859232306161136, 0.4276184852080373, 0.6322891969248476, 0.8152575231908928, 0.1843236054178521, 0.1748283488219018, 0.3855661605553186, 0.2520638069502931, 0.7684619933555234, 0.8521946399131666, 0.9410196723235659, 0.569508546524376, 0.5401217032768564, 0.9855325881478148, 0.3168341641323381, 0.06401676839352723, 0.08914614631245749, 0.7831855219195982, 0.7392686851216698, 0.6865611484433148, 0.5422616258950669, 0.42886026859570776, 0.9868733979450702, 0.5739832269931818, 0.9016147610013997, 0.07185365516709424, 0.8576403061596791, 0.4300300180709405, 0.4682025707921867, 0.7719630712790708, 0.8970428318712616, 0.17062490089069128, 0.0674251760416973, 0.10640994505315895, 0.7046039474768345, 0.5186259068069415, 0.9575936836472421, 0.1042533860438189, 0.43572886498516096, 0.5977934444535355, 0.9577909062369688], 'context': {'min_length': 128}}]
Workflow stopped early due to invalid perception output.

--- Scenario 3: Failure due to invalid ActionPlan (e.g., plan elements out of range) ---
[PerceptionAgent] Processing image: good_image_url_2
[PerceptionAgent] Image processed, embedding generated (norm=1.0000).
[PerceptionAgent] Processing text: Another piece of...
Validation error for ActionPlan
action_sequence_vector
  Value error, Action sequence vector elements must be between 0.0 and 1.0. [type=value_error, input_value=[2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注