探讨 ‘Vector Store as Memory’:将 LangGraph 的 Checkpoints 与向量数据库融合,打造真正的‘第二大脑’ 各位同仁,各位对人工智能未来充满好奇的技术专家们,晚上好。 我们今天齐聚一堂,共同探讨一个令人兴奋且极具潜力的技术方向:如何通过将 LangGraph 的 Checkpoints 与向量数据库深度融合,构建一个真正具备“第二大脑”能力的智能系统。在当前大语言模型(LLM)驱动的应用浪潮中,我们面临的核心挑战之一是:如何让我们的AI应用拥有持续的、上下文感知的、能够从历史经验中学习和推理的“记忆”? 传统的RAG(Retrieval Augmented Generation)模式,虽然极大地扩展了LLM的知识边界,但其本质是无状态的,每次查询都是相对独立的。而LangGraph,作为LLM编排的利器,通过状态机和节点间跳转,赋予了应用流程和生命周期。它的Checkpoints机制,更是为我们提供了保存应用状态的强大能力。然而,仅仅保存状态是不够的,如果不能智能地检索和利用这些历史状态,它们就只是一堆沉睡的数据。 我们 …
继续阅读“探讨 ‘Vector Store as Memory’:将 LangGraph 的 Checkpoints 与向量数据库融合,打造真正的‘第二大脑’”