开篇引言:上下文窗口的永恒挑战 各位同仁,大家好。在人工智能,特别是大型语言模型(LLM)的浪潮中,我们正经历着一场前所未有的技术变革。LLM以其强大的语言理解和生成能力,正在重塑人机交互的边界。然而,在享受其带来便利的同时,一个核心的架构限制也日益凸显,成为制约其在长对话、复杂任务中表现的关键瓶颈——那就是上下文窗口(Context Window)。 LLM的工作原理是基于其在训练时学习到的语言模式,对输入序列(即上下文)进行理解,并生成下一个最可能的词元(token)。这个输入序列的长度是有限的,由模型的上下文窗口大小决定。目前主流的LLM,如GPT-3.5、GPT-4,其上下文窗口长度从几千到几十万个token不等。表面上看,这似乎很宽裕,但在实际的、持续进行的对话或复杂任务中,这些token很快就会被历史对话、文档内容、指令等填充。 当对话持续进行,历史消息不断累积,最终会超出LLM的上下文窗口限制。一旦超出,模型就无法看到完整的历史信息,导致: 信息遗忘 (Forgetting Information):LLM无法回忆起对话早期提到的关键信息,导致对话变得不连贯,甚至出现逻辑 …
继续阅读“深入 ‘Context Window Compression’:利用 LLM 将历史对话压缩为‘关键事实矢量’以节省 70% 的 Token 开销”