大模型并发推理降速如何通过KV Cache复用显著提速

大模型并发推理降速:KV Cache 复用提速方案

大家好,今天我们来深入探讨一个大模型推理中非常关键的问题:并发推理降速以及如何通过 KV Cache 复用来显著提升性能。大模型,尤其是 Transformer 架构的模型,在推理过程中需要维护一个 KV Cache (Key-Value Cache)。在并发推理场景下,如果没有有效的 KV Cache 管理策略,很容易导致性能瓶颈,甚至出现 OOM (Out of Memory) 错误。

1. KV Cache 的作用与挑战

首先,我们来回顾一下 KV Cache 在 Transformer 模型中的作用。在自注意力机制中,每个 token 都需要与其他所有 token 进行交互,计算注意力权重。为了避免重复计算,模型会将已经计算过的 Key 和 Value 向量缓存起来,这就是 KV Cache。

KV Cache 的好处:

  • 加速推理: 避免重复计算,显著减少推理时间。
  • 支持长序列: 使得模型能够处理更长的输入序列,因为只需缓存 K 和 V 向量,而无需重新计算整个序列。

KV Cache 的挑战:

  • 内存占用大: KV Cache 的大小与序列长度和模型层数成正比,对于大模型来说,KV Cache 的内存占用非常可观。
  • 并发推理冲突: 在并发推理场景下,多个请求同时访问 KV Cache,容易导致竞争和冲突,降低推理效率。
  • 动态序列长度: 实际应用中,不同请求的序列长度可能不同,如何有效管理不同长度的 KV Cache 是一个难题。

2. 并发推理降速的原因分析

并发推理降速主要由以下几个因素导致:

  • 内存带宽瓶颈: 多个请求同时访问 KV Cache,导致内存带宽竞争,降低数据传输速度。
  • KV Cache 拷贝开销: 在某些实现中,每次推理都需要拷贝 KV Cache,这会带来额外的性能开销。
  • 锁竞争: 如果使用锁机制来保护 KV Cache 的访问,多个请求之间会发生锁竞争,导致线程阻塞。
  • 批处理效率降低: 为了提高吞吐量,通常会将多个请求组成一个 batch 进行推理。但是,如果请求的序列长度差异很大,会导致 padding 增加,降低批处理效率。

3. KV Cache 复用策略:核心思想与方案

KV Cache 复用的核心思想是:尽可能地共享和重用 KV Cache,减少重复计算和内存占用。 下面介绍几种常见的 KV Cache 复用策略:

  • 静态 KV Cache 分配:

    • 原理: 预先分配固定大小的 KV Cache 空间,每个请求分配一块独立的 KV Cache。
    • 优点: 实现简单,无需复杂的内存管理。
    • 缺点: 容易造成内存浪费,如果请求的序列长度超过预分配的大小,则无法处理。
    • 适用场景: 序列长度相对固定的场景。
    class StaticKVCache:
        def __init__(self, num_layers, max_seq_len, hidden_size, batch_size):
            self.num_layers = num_layers
            self.max_seq_len = max_seq_len
            self.hidden_size = hidden_size
            self.batch_size = batch_size
    
            self.key_cache = torch.zeros(num_layers, batch_size, max_seq_len, hidden_size)
            self.value_cache = torch.zeros(num_layers, batch_size, max_seq_len, hidden_size)
    
        def get_kv_cache(self):
            return self.key_cache, self.value_cache
    
        def update_kv_cache(self, layer_idx, batch_idx, seq_idx, key, value):
            self.key_cache[layer_idx, batch_idx, seq_idx] = key
            self.value_cache[layer_idx, batch_idx, seq_idx] = value
  • 动态 KV Cache 分配:

    • 原理: 根据请求的序列长度动态分配 KV Cache 空间。
    • 优点: 节省内存,能够处理不同长度的序列。
    • 缺点: 实现复杂,需要维护一个内存池来管理 KV Cache 的分配和释放。
    • 适用场景: 序列长度变化较大的场景。
    import torch
    import gc
    
    class DynamicKVCache:
        def __init__(self, num_layers, hidden_size):
            self.num_layers = num_layers
            self.hidden_size = hidden_size
            self.kv_caches = []  # List of dictionaries, each dict is {seq_len: (key_cache, value_cache)}
    
        def allocate_kv_cache(self, seq_len, batch_size):
            key_cache = torch.zeros(self.num_layers, batch_size, seq_len, self.hidden_size)
            value_cache = torch.zeros(self.num_layers, batch_size, seq_len, self.hidden_size)
            return key_cache, value_cache
    
        def get_kv_cache(self, seq_len, batch_size):
            # Check if a suitable cache exists.  This is a simplified example.
            # In a real system, you'd use a more sophisticated allocation/deallocation
            # strategy (e.g., LRU, fragmentation handling).  Here, we just allocate
            # a new cache every time.  This defeats the purpose of caching in a
            # real-world scenario, but it illustrates the dynamic allocation principle.
    
            key_cache, value_cache = self.allocate_kv_cache(seq_len, batch_size)
            return key_cache, value_cache
    
        def release_kv_cache(self, key_cache, value_cache):  #Simplified example, actual freeing will require memory pool
            del key_cache
            del value_cache
            gc.collect()  # Force garbage collection
    
        def update_kv_cache(self, key_cache, value_cache, layer_idx, batch_idx, seq_idx, key, value):
             key_cache[layer_idx, batch_idx, seq_idx] = key
             value_cache[layer_idx, batch_idx, seq_idx] = value
  • 共享 KV Cache (Shared KV Cache):

    • 原理: 多个请求共享同一个 KV Cache,通过某种机制来避免冲突和数据污染。
    • 优点: 极大地节省内存,提高 KV Cache 的利用率。
    • 缺点: 实现非常复杂,需要精细的并发控制和数据隔离机制。
    • 适用场景: 高并发、内存资源紧张的场景。
    • 实现方式: 可以采用读写锁、原子操作、Copy-on-Write (COW) 等技术来实现。
    import torch
    import threading
    
    class SharedKVCache:
        def __init__(self, num_layers, max_seq_len, hidden_size):
            self.num_layers = num_layers
            self.max_seq_len = max_seq_len
            self.hidden_size = hidden_size
    
            self.key_cache = torch.zeros(num_layers, max_seq_len, hidden_size)
            self.value_cache = torch.zeros(num_layers, max_seq_len, hidden_size)
    
            self.lock = threading.Lock()  # Use a lock to protect access to the shared cache
    
        def get_kv_cache(self):
            return self.key_cache, self.value_cache
    
        def update_kv_cache(self, layer_idx, seq_idx, key, value):
            with self.lock:  # Acquire the lock before accessing the shared cache
                self.key_cache[layer_idx, seq_idx] = key
                self.value_cache[layer_idx, seq_idx] = value
    
        #Example usage - NOT a full implementation
        def parallel_inference(self, input_sequences):
            threads = []
            results = []
            for seq in input_sequences:
                t = threading.Thread(target=self.infer_sequence, args=(seq, results))
                threads.append(t)
                t.start()
    
            for t in threads:
                t.join()
    
            return results
    
        def infer_sequence(self, sequence, results):
            # Simplified inference logic using the shared KV cache
            # In a real implementation, you'd need to manage sequence IDs and offsets
            # within the shared cache to avoid overwriting data from other sequences.
            #This example is for demonstration purposes only and is incomplete.
    
            kv_cache, value_cache = self.get_kv_cache()
            for i, token in enumerate(sequence):
                # Simulate updating the KV cache (replace with actual transformer layer logic)
                layer_idx = 0  # Just an example
                key = torch.randn(self.hidden_size) #Simulate key and value vectors
                value = torch.randn(self.hidden_size)
    
                self.update_kv_cache(layer_idx, i, key, value) #Update shared KV cache
    
            # Simulate using the KV cache for inference (replace with actual transformer layer logic)
            # ...
    
            results.append("Inference result for sequence: " + str(sequence))
  • 分页 KV Cache (Paged KV Cache):

    • 原理: 将 KV Cache 分成多个固定大小的页面,类似于操作系统的内存分页机制。每个请求分配若干个页面来存储 KV Cache,可以动态地增加或减少页面数量。
    • 优点: 灵活地管理 KV Cache,避免内存碎片,提高内存利用率。
    • 缺点: 实现复杂,需要维护一个页面表来记录每个请求的页面分配情况。
    • 适用场景: 序列长度变化较大、内存资源有限的场景。
    import torch
    
    class PagedKVCache:
        def __init__(self, num_layers, page_size, hidden_size, num_pages):
            self.num_layers = num_layers
            self.page_size = page_size  # Number of tokens per page
            self.hidden_size = hidden_size
            self.num_pages = num_pages
    
            self.key_cache = torch.zeros(num_pages, num_layers, page_size, hidden_size)
            self.value_cache = torch.zeros(num_pages, num_layers, page_size, hidden_size)
    
            self.page_table = {}  # Dictionary to store page assignments for each request (request_id: list of page indices)
            self.available_pages = list(range(num_pages))  # List of available page indices
    
        def allocate_pages(self, request_id, num_required_pages):
            if len(self.available_pages) < num_required_pages:
                raise Exception("Not enough pages available")
    
            allocated_pages = self.available_pages[:num_required_pages]
            self.available_pages = self.available_pages[num_required_pages:]
            self.page_table[request_id] = allocated_pages
            return allocated_pages
    
        def get_kv_cache_page(self, page_index):
            return self.key_cache[page_index], self.value_cache[page_index]
    
        def update_kv_cache(self, request_id, layer_idx, seq_idx, key, value):
            # Calculate the page index and offset within the page
            page_index = self.page_table[request_id][seq_idx // self.page_size]
            offset_within_page = seq_idx % self.page_size
    
            key_cache_page, value_cache_page = self.get_kv_cache_page(page_index)
            key_cache_page[layer_idx, offset_within_page] = key
            value_cache_page[layer_idx, offset_within_page] = value
    
        def release_pages(self, request_id):
            if request_id in self.page_table:
                released_pages = self.page_table[request_id]
                self.available_pages.extend(released_pages)
                self.available_pages.sort()  # Maintain sorted order for efficient allocation
                del self.page_table[request_id]
    
    # Example Usage:
    # paged_kv_cache = PagedKVCache(num_layers=12, page_size=64, hidden_size=768, num_pages=100)
    # request_id = "request123"
    # seq_len = 200
    # num_required_pages = (seq_len + paged_kv_cache.page_size - 1) // paged_kv_cache.page_size #Ceiling division to calculate pages
    # allocated_pages = paged_kv_cache.allocate_pages(request_id, num_required_pages)
    
    # for i in range(seq_len):
    #    key = torch.randn(paged_kv_cache.hidden_size)
    #    value = torch.randn(paged_kv_cache.hidden_size)
    #    paged_kv_cache.update_kv_cache(request_id, layer_idx=0, seq_idx=i, key=key, value=value)
    
    # paged_kv_cache.release_pages(request_id)
    
  • 连续批处理 (Continuous Batching):

    • 原理: 将多个请求动态地组成一个 batch 进行推理,充分利用 GPU 的并行计算能力。当有新的请求到达时,将其添加到当前 batch 中;当 batch 达到一定大小或超时时,就进行一次推理。
    • 优点: 提高吞吐量,减少 latency。
    • 缺点: 需要仔细调整 batch 大小和超时时间,以平衡吞吐量和 latency。
    • 与 KV Cache 复用结合: 可以将连续批处理与动态 KV Cache 分配或分页 KV Cache 结合使用,以进一步提高性能。
    import torch
    import time
    import threading
    
    class ContinuousBatching:
        def __init__(self, model, max_batch_size, timeout, device):
            self.model = model.to(device)
            self.max_batch_size = max_batch_size
            self.timeout = timeout
            self.device = device
    
            self.current_batch = []
            self.lock = threading.Lock()
            self.last_batch_time = time.time()
            self.thread = threading.Thread(target=self.process_batch)
            self.thread.daemon = True  # Allow the main thread to exit even if this thread is running
            self.thread.start()
    
        def add_request(self, request):
            with self.lock:
                self.current_batch.append(request)
    
        def process_batch(self):
            while True:
                time.sleep(0.001)  # Check frequently
    
                with self.lock:
                    if len(self.current_batch) > 0 and (len(self.current_batch) >= self.max_batch_size or time.time() - self.last_batch_time > self.timeout):
                        batch = self.current_batch
                        self.current_batch = []
                        self.last_batch_time = time.time()
    
                if batch:
                    self.infer_batch(batch)
                    batch = None #Clear batch to avoid double processing
    
        def infer_batch(self, batch):
            # Prepare input tensors from the batch requests
            input_sequences = [req['input'] for req in batch]
            # Pad sequences to the maximum length in the batch
            padded_inputs = self.pad_sequences(input_sequences)
            input_tensor = torch.tensor(padded_inputs).to(self.device)
    
            # Perform inference
            with torch.no_grad():
                output = self.model(input_tensor)
    
            # Process the output and return results to the corresponding requests
            for i, req in enumerate(batch):
                req['callback'](output[i].cpu().numpy())  # Call the callback function with the result
    
        def pad_sequences(self, sequences):
            max_len = max(len(seq) for seq in sequences)
            padded_sequences = [seq + [0] * (max_len - len(seq)) for seq in sequences] #Simple padding with 0
            return padded_sequences
    
        # Example usage (assuming you have a pre-trained model and a callback function)
        def submit_request(self, input_sequence, callback):
            request = {'input': input_sequence, 'callback': callback}
            self.add_request(request)

4. 代码示例:Paged KV Cache + Continuous Batching 结合

下面给出一个将 Paged KV Cache 和 Continuous Batching 结合使用的示例代码。这个示例代码只是一个框架,需要根据具体的模型和应用场景进行修改。

import torch
import time
import threading

# 假设已经定义了 PagedKVCache 类和 Transformer 模型

class CombinedInferenceEngine:
    def __init__(self, model, max_batch_size, timeout, device, num_layers, page_size, hidden_size, num_pages):
        self.model = model.to(device)
        self.max_batch_size = max_batch_size
        self.timeout = timeout
        self.device = device
        self.kv_cache = PagedKVCache(num_layers, page_size, hidden_size, num_pages) # Use PagedKVCache
        self.continuous_batching = ContinuousBatchingWithKVCache(self.model, self.max_batch_size, self.timeout, self.device, self.kv_cache)

    def submit_request(self, input_sequence, callback):
        self.continuous_batching.submit_request(input_sequence, callback)

# Modified ContinuousBatching class to use PagedKVCache
class ContinuousBatchingWithKVCache:
    def __init__(self, model, max_batch_size, timeout, device, kv_cache):
        self.model = model.to(device)
        self.max_batch_size = max_batch_size
        self.timeout = timeout
        self.device = device
        self.kv_cache = kv_cache
        self.current_batch = []
        self.lock = threading.Lock()
        self.last_batch_time = time.time()
        self.thread = threading.Thread(target=self.process_batch)
        self.thread.daemon = True
        self.thread.start()

    def add_request(self, request):
        with self.lock:
            self.current_batch.append(request)

    def process_batch(self):
        while True:
            time.sleep(0.001)

            with self.lock:
                if len(self.current_batch) > 0 and (len(self.current_batch) >= self.max_batch_size or time.time() - self.last_batch_time > self.timeout):
                    batch = self.current_batch
                    self.current_batch = []
                    self.last_batch_time = time.time()

            if batch:
                self.infer_batch(batch)
                batch = None

    def infer_batch(self, batch):
        input_sequences = [req['input'] for req in batch]
        max_len = max(len(seq) for seq in input_sequences)

        # Allocate pages for the entire batch
        request_ids = [str(time.time()) + str(i) for i in range(len(batch))] #Generate unique IDs
        num_required_pages = [(len(seq) + self.kv_cache.page_size - 1) // self.kv_cache.page_size for seq in input_sequences]
        allocated_pages = []
        for i, req_id in enumerate(request_ids):
            try:
                 allocated_pages.append(self.kv_cache.allocate_pages(req_id, num_required_pages[i]))
            except Exception as e:
                 print(f"Failed to allocate pages: {e}")
                 # Handle OOM or other allocation errors gracefully
                 for req in batch:
                     req['callback'](None)  # Indicate failure
                 return

        padded_inputs = self.pad_sequences(input_sequences)
        input_tensor = torch.tensor(padded_inputs).to(self.device)

        with torch.no_grad():
            #Use the PagedKVcache during the model's forward pass (example pseudocode)
            #This assumes your model is adapted to take KVCache as input and output

            output = self.model(input_tensor, self.kv_cache, request_ids) #Modified model call

        for i, req in enumerate(batch):
            req['callback'](output[i].cpu().numpy())
            self.kv_cache.release_pages(request_ids[i]) #Release pages after inference

    def pad_sequences(self, sequences):
        max_len = max(len(seq) for seq in sequences)
        padded_sequences = [seq + [0] * (max_len - len(seq)) for seq in sequences]
        return padded_sequences

    def submit_request(self, input_sequence, callback):
        request = {'input': input_sequence, 'callback': callback}
        self.add_request(request)

5. 其他优化技巧

除了 KV Cache 复用策略之外,还可以采用以下优化技巧来进一步提升并发推理性能:

  • 模型量化: 将模型参数从 FP32 降低到 FP16 或 INT8,减少内存占用和计算量。
  • 算子融合: 将多个算子合并成一个算子,减少 kernel Launch 的开销。
  • 使用 TensorRT 等推理引擎: 利用推理引擎的优化能力,提高推理效率。
  • GPU 显存优化: 尽量减少不必要的显存拷贝,避免显存碎片。
  • 请求优先级调度: 根据请求的优先级来调度推理任务,保证重要请求的响应速度。

6. 不同 KV Cache 策略的对比

下表对几种常见的 KV Cache 策略进行了对比:

策略 优点 缺点 适用场景
静态 KV Cache 实现简单 内存浪费,无法处理长序列 序列长度相对固定的场景
动态 KV Cache 节省内存,能够处理不同长度的序列 实现复杂,需要维护内存池 序列长度变化较大的场景
共享 KV Cache 极大地节省内存,提高 KV Cache 的利用率 实现非常复杂,需要精细的并发控制和数据隔离机制 高并发、内存资源紧张的场景
分页 KV Cache 灵活地管理 KV Cache,避免内存碎片 实现复杂,需要维护页面表 序列长度变化较大、内存资源有限的场景

7. 总结:优化KV Cache 是提升并发推理的关键

KV Cache 是大模型推理的重要组成部分,有效的 KV Cache 管理策略能够显著提升并发推理性能。通过选择合适的 KV Cache 复用策略,并结合其他优化技巧,可以充分利用 GPU 资源,提高推理吞吐量,降低 latency。 在实际应用中,需要根据具体的模型和应用场景,选择合适的 KV Cache 管理策略。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注