大模型并发推理降速:KV Cache 复用提速方案
大家好,今天我们来深入探讨一个大模型推理中非常关键的问题:并发推理降速以及如何通过 KV Cache 复用来显著提升性能。大模型,尤其是 Transformer 架构的模型,在推理过程中需要维护一个 KV Cache (Key-Value Cache)。在并发推理场景下,如果没有有效的 KV Cache 管理策略,很容易导致性能瓶颈,甚至出现 OOM (Out of Memory) 错误。
1. KV Cache 的作用与挑战
首先,我们来回顾一下 KV Cache 在 Transformer 模型中的作用。在自注意力机制中,每个 token 都需要与其他所有 token 进行交互,计算注意力权重。为了避免重复计算,模型会将已经计算过的 Key 和 Value 向量缓存起来,这就是 KV Cache。
KV Cache 的好处:
- 加速推理: 避免重复计算,显著减少推理时间。
- 支持长序列: 使得模型能够处理更长的输入序列,因为只需缓存 K 和 V 向量,而无需重新计算整个序列。
KV Cache 的挑战:
- 内存占用大: KV Cache 的大小与序列长度和模型层数成正比,对于大模型来说,KV Cache 的内存占用非常可观。
- 并发推理冲突: 在并发推理场景下,多个请求同时访问 KV Cache,容易导致竞争和冲突,降低推理效率。
- 动态序列长度: 实际应用中,不同请求的序列长度可能不同,如何有效管理不同长度的 KV Cache 是一个难题。
2. 并发推理降速的原因分析
并发推理降速主要由以下几个因素导致:
- 内存带宽瓶颈: 多个请求同时访问 KV Cache,导致内存带宽竞争,降低数据传输速度。
- KV Cache 拷贝开销: 在某些实现中,每次推理都需要拷贝 KV Cache,这会带来额外的性能开销。
- 锁竞争: 如果使用锁机制来保护 KV Cache 的访问,多个请求之间会发生锁竞争,导致线程阻塞。
- 批处理效率降低: 为了提高吞吐量,通常会将多个请求组成一个 batch 进行推理。但是,如果请求的序列长度差异很大,会导致 padding 增加,降低批处理效率。
3. KV Cache 复用策略:核心思想与方案
KV Cache 复用的核心思想是:尽可能地共享和重用 KV Cache,减少重复计算和内存占用。 下面介绍几种常见的 KV Cache 复用策略:
-
静态 KV Cache 分配:
- 原理: 预先分配固定大小的 KV Cache 空间,每个请求分配一块独立的 KV Cache。
- 优点: 实现简单,无需复杂的内存管理。
- 缺点: 容易造成内存浪费,如果请求的序列长度超过预分配的大小,则无法处理。
- 适用场景: 序列长度相对固定的场景。
class StaticKVCache: def __init__(self, num_layers, max_seq_len, hidden_size, batch_size): self.num_layers = num_layers self.max_seq_len = max_seq_len self.hidden_size = hidden_size self.batch_size = batch_size self.key_cache = torch.zeros(num_layers, batch_size, max_seq_len, hidden_size) self.value_cache = torch.zeros(num_layers, batch_size, max_seq_len, hidden_size) def get_kv_cache(self): return self.key_cache, self.value_cache def update_kv_cache(self, layer_idx, batch_idx, seq_idx, key, value): self.key_cache[layer_idx, batch_idx, seq_idx] = key self.value_cache[layer_idx, batch_idx, seq_idx] = value -
动态 KV Cache 分配:
- 原理: 根据请求的序列长度动态分配 KV Cache 空间。
- 优点: 节省内存,能够处理不同长度的序列。
- 缺点: 实现复杂,需要维护一个内存池来管理 KV Cache 的分配和释放。
- 适用场景: 序列长度变化较大的场景。
import torch import gc class DynamicKVCache: def __init__(self, num_layers, hidden_size): self.num_layers = num_layers self.hidden_size = hidden_size self.kv_caches = [] # List of dictionaries, each dict is {seq_len: (key_cache, value_cache)} def allocate_kv_cache(self, seq_len, batch_size): key_cache = torch.zeros(self.num_layers, batch_size, seq_len, self.hidden_size) value_cache = torch.zeros(self.num_layers, batch_size, seq_len, self.hidden_size) return key_cache, value_cache def get_kv_cache(self, seq_len, batch_size): # Check if a suitable cache exists. This is a simplified example. # In a real system, you'd use a more sophisticated allocation/deallocation # strategy (e.g., LRU, fragmentation handling). Here, we just allocate # a new cache every time. This defeats the purpose of caching in a # real-world scenario, but it illustrates the dynamic allocation principle. key_cache, value_cache = self.allocate_kv_cache(seq_len, batch_size) return key_cache, value_cache def release_kv_cache(self, key_cache, value_cache): #Simplified example, actual freeing will require memory pool del key_cache del value_cache gc.collect() # Force garbage collection def update_kv_cache(self, key_cache, value_cache, layer_idx, batch_idx, seq_idx, key, value): key_cache[layer_idx, batch_idx, seq_idx] = key value_cache[layer_idx, batch_idx, seq_idx] = value -
共享 KV Cache (Shared KV Cache):
- 原理: 多个请求共享同一个 KV Cache,通过某种机制来避免冲突和数据污染。
- 优点: 极大地节省内存,提高 KV Cache 的利用率。
- 缺点: 实现非常复杂,需要精细的并发控制和数据隔离机制。
- 适用场景: 高并发、内存资源紧张的场景。
- 实现方式: 可以采用读写锁、原子操作、Copy-on-Write (COW) 等技术来实现。
import torch import threading class SharedKVCache: def __init__(self, num_layers, max_seq_len, hidden_size): self.num_layers = num_layers self.max_seq_len = max_seq_len self.hidden_size = hidden_size self.key_cache = torch.zeros(num_layers, max_seq_len, hidden_size) self.value_cache = torch.zeros(num_layers, max_seq_len, hidden_size) self.lock = threading.Lock() # Use a lock to protect access to the shared cache def get_kv_cache(self): return self.key_cache, self.value_cache def update_kv_cache(self, layer_idx, seq_idx, key, value): with self.lock: # Acquire the lock before accessing the shared cache self.key_cache[layer_idx, seq_idx] = key self.value_cache[layer_idx, seq_idx] = value #Example usage - NOT a full implementation def parallel_inference(self, input_sequences): threads = [] results = [] for seq in input_sequences: t = threading.Thread(target=self.infer_sequence, args=(seq, results)) threads.append(t) t.start() for t in threads: t.join() return results def infer_sequence(self, sequence, results): # Simplified inference logic using the shared KV cache # In a real implementation, you'd need to manage sequence IDs and offsets # within the shared cache to avoid overwriting data from other sequences. #This example is for demonstration purposes only and is incomplete. kv_cache, value_cache = self.get_kv_cache() for i, token in enumerate(sequence): # Simulate updating the KV cache (replace with actual transformer layer logic) layer_idx = 0 # Just an example key = torch.randn(self.hidden_size) #Simulate key and value vectors value = torch.randn(self.hidden_size) self.update_kv_cache(layer_idx, i, key, value) #Update shared KV cache # Simulate using the KV cache for inference (replace with actual transformer layer logic) # ... results.append("Inference result for sequence: " + str(sequence)) -
分页 KV Cache (Paged KV Cache):
- 原理: 将 KV Cache 分成多个固定大小的页面,类似于操作系统的内存分页机制。每个请求分配若干个页面来存储 KV Cache,可以动态地增加或减少页面数量。
- 优点: 灵活地管理 KV Cache,避免内存碎片,提高内存利用率。
- 缺点: 实现复杂,需要维护一个页面表来记录每个请求的页面分配情况。
- 适用场景: 序列长度变化较大、内存资源有限的场景。
import torch class PagedKVCache: def __init__(self, num_layers, page_size, hidden_size, num_pages): self.num_layers = num_layers self.page_size = page_size # Number of tokens per page self.hidden_size = hidden_size self.num_pages = num_pages self.key_cache = torch.zeros(num_pages, num_layers, page_size, hidden_size) self.value_cache = torch.zeros(num_pages, num_layers, page_size, hidden_size) self.page_table = {} # Dictionary to store page assignments for each request (request_id: list of page indices) self.available_pages = list(range(num_pages)) # List of available page indices def allocate_pages(self, request_id, num_required_pages): if len(self.available_pages) < num_required_pages: raise Exception("Not enough pages available") allocated_pages = self.available_pages[:num_required_pages] self.available_pages = self.available_pages[num_required_pages:] self.page_table[request_id] = allocated_pages return allocated_pages def get_kv_cache_page(self, page_index): return self.key_cache[page_index], self.value_cache[page_index] def update_kv_cache(self, request_id, layer_idx, seq_idx, key, value): # Calculate the page index and offset within the page page_index = self.page_table[request_id][seq_idx // self.page_size] offset_within_page = seq_idx % self.page_size key_cache_page, value_cache_page = self.get_kv_cache_page(page_index) key_cache_page[layer_idx, offset_within_page] = key value_cache_page[layer_idx, offset_within_page] = value def release_pages(self, request_id): if request_id in self.page_table: released_pages = self.page_table[request_id] self.available_pages.extend(released_pages) self.available_pages.sort() # Maintain sorted order for efficient allocation del self.page_table[request_id] # Example Usage: # paged_kv_cache = PagedKVCache(num_layers=12, page_size=64, hidden_size=768, num_pages=100) # request_id = "request123" # seq_len = 200 # num_required_pages = (seq_len + paged_kv_cache.page_size - 1) // paged_kv_cache.page_size #Ceiling division to calculate pages # allocated_pages = paged_kv_cache.allocate_pages(request_id, num_required_pages) # for i in range(seq_len): # key = torch.randn(paged_kv_cache.hidden_size) # value = torch.randn(paged_kv_cache.hidden_size) # paged_kv_cache.update_kv_cache(request_id, layer_idx=0, seq_idx=i, key=key, value=value) # paged_kv_cache.release_pages(request_id) -
连续批处理 (Continuous Batching):
- 原理: 将多个请求动态地组成一个 batch 进行推理,充分利用 GPU 的并行计算能力。当有新的请求到达时,将其添加到当前 batch 中;当 batch 达到一定大小或超时时,就进行一次推理。
- 优点: 提高吞吐量,减少 latency。
- 缺点: 需要仔细调整 batch 大小和超时时间,以平衡吞吐量和 latency。
- 与 KV Cache 复用结合: 可以将连续批处理与动态 KV Cache 分配或分页 KV Cache 结合使用,以进一步提高性能。
import torch import time import threading class ContinuousBatching: def __init__(self, model, max_batch_size, timeout, device): self.model = model.to(device) self.max_batch_size = max_batch_size self.timeout = timeout self.device = device self.current_batch = [] self.lock = threading.Lock() self.last_batch_time = time.time() self.thread = threading.Thread(target=self.process_batch) self.thread.daemon = True # Allow the main thread to exit even if this thread is running self.thread.start() def add_request(self, request): with self.lock: self.current_batch.append(request) def process_batch(self): while True: time.sleep(0.001) # Check frequently with self.lock: if len(self.current_batch) > 0 and (len(self.current_batch) >= self.max_batch_size or time.time() - self.last_batch_time > self.timeout): batch = self.current_batch self.current_batch = [] self.last_batch_time = time.time() if batch: self.infer_batch(batch) batch = None #Clear batch to avoid double processing def infer_batch(self, batch): # Prepare input tensors from the batch requests input_sequences = [req['input'] for req in batch] # Pad sequences to the maximum length in the batch padded_inputs = self.pad_sequences(input_sequences) input_tensor = torch.tensor(padded_inputs).to(self.device) # Perform inference with torch.no_grad(): output = self.model(input_tensor) # Process the output and return results to the corresponding requests for i, req in enumerate(batch): req['callback'](output[i].cpu().numpy()) # Call the callback function with the result def pad_sequences(self, sequences): max_len = max(len(seq) for seq in sequences) padded_sequences = [seq + [0] * (max_len - len(seq)) for seq in sequences] #Simple padding with 0 return padded_sequences # Example usage (assuming you have a pre-trained model and a callback function) def submit_request(self, input_sequence, callback): request = {'input': input_sequence, 'callback': callback} self.add_request(request)
4. 代码示例:Paged KV Cache + Continuous Batching 结合
下面给出一个将 Paged KV Cache 和 Continuous Batching 结合使用的示例代码。这个示例代码只是一个框架,需要根据具体的模型和应用场景进行修改。
import torch
import time
import threading
# 假设已经定义了 PagedKVCache 类和 Transformer 模型
class CombinedInferenceEngine:
def __init__(self, model, max_batch_size, timeout, device, num_layers, page_size, hidden_size, num_pages):
self.model = model.to(device)
self.max_batch_size = max_batch_size
self.timeout = timeout
self.device = device
self.kv_cache = PagedKVCache(num_layers, page_size, hidden_size, num_pages) # Use PagedKVCache
self.continuous_batching = ContinuousBatchingWithKVCache(self.model, self.max_batch_size, self.timeout, self.device, self.kv_cache)
def submit_request(self, input_sequence, callback):
self.continuous_batching.submit_request(input_sequence, callback)
# Modified ContinuousBatching class to use PagedKVCache
class ContinuousBatchingWithKVCache:
def __init__(self, model, max_batch_size, timeout, device, kv_cache):
self.model = model.to(device)
self.max_batch_size = max_batch_size
self.timeout = timeout
self.device = device
self.kv_cache = kv_cache
self.current_batch = []
self.lock = threading.Lock()
self.last_batch_time = time.time()
self.thread = threading.Thread(target=self.process_batch)
self.thread.daemon = True
self.thread.start()
def add_request(self, request):
with self.lock:
self.current_batch.append(request)
def process_batch(self):
while True:
time.sleep(0.001)
with self.lock:
if len(self.current_batch) > 0 and (len(self.current_batch) >= self.max_batch_size or time.time() - self.last_batch_time > self.timeout):
batch = self.current_batch
self.current_batch = []
self.last_batch_time = time.time()
if batch:
self.infer_batch(batch)
batch = None
def infer_batch(self, batch):
input_sequences = [req['input'] for req in batch]
max_len = max(len(seq) for seq in input_sequences)
# Allocate pages for the entire batch
request_ids = [str(time.time()) + str(i) for i in range(len(batch))] #Generate unique IDs
num_required_pages = [(len(seq) + self.kv_cache.page_size - 1) // self.kv_cache.page_size for seq in input_sequences]
allocated_pages = []
for i, req_id in enumerate(request_ids):
try:
allocated_pages.append(self.kv_cache.allocate_pages(req_id, num_required_pages[i]))
except Exception as e:
print(f"Failed to allocate pages: {e}")
# Handle OOM or other allocation errors gracefully
for req in batch:
req['callback'](None) # Indicate failure
return
padded_inputs = self.pad_sequences(input_sequences)
input_tensor = torch.tensor(padded_inputs).to(self.device)
with torch.no_grad():
#Use the PagedKVcache during the model's forward pass (example pseudocode)
#This assumes your model is adapted to take KVCache as input and output
output = self.model(input_tensor, self.kv_cache, request_ids) #Modified model call
for i, req in enumerate(batch):
req['callback'](output[i].cpu().numpy())
self.kv_cache.release_pages(request_ids[i]) #Release pages after inference
def pad_sequences(self, sequences):
max_len = max(len(seq) for seq in sequences)
padded_sequences = [seq + [0] * (max_len - len(seq)) for seq in sequences]
return padded_sequences
def submit_request(self, input_sequence, callback):
request = {'input': input_sequence, 'callback': callback}
self.add_request(request)
5. 其他优化技巧
除了 KV Cache 复用策略之外,还可以采用以下优化技巧来进一步提升并发推理性能:
- 模型量化: 将模型参数从 FP32 降低到 FP16 或 INT8,减少内存占用和计算量。
- 算子融合: 将多个算子合并成一个算子,减少 kernel Launch 的开销。
- 使用 TensorRT 等推理引擎: 利用推理引擎的优化能力,提高推理效率。
- GPU 显存优化: 尽量减少不必要的显存拷贝,避免显存碎片。
- 请求优先级调度: 根据请求的优先级来调度推理任务,保证重要请求的响应速度。
6. 不同 KV Cache 策略的对比
下表对几种常见的 KV Cache 策略进行了对比:
| 策略 | 优点 | 缺点 | 适用场景 |
|---|---|---|---|
| 静态 KV Cache | 实现简单 | 内存浪费,无法处理长序列 | 序列长度相对固定的场景 |
| 动态 KV Cache | 节省内存,能够处理不同长度的序列 | 实现复杂,需要维护内存池 | 序列长度变化较大的场景 |
| 共享 KV Cache | 极大地节省内存,提高 KV Cache 的利用率 | 实现非常复杂,需要精细的并发控制和数据隔离机制 | 高并发、内存资源紧张的场景 |
| 分页 KV Cache | 灵活地管理 KV Cache,避免内存碎片 | 实现复杂,需要维护页面表 | 序列长度变化较大、内存资源有限的场景 |
7. 总结:优化KV Cache 是提升并发推理的关键
KV Cache 是大模型推理的重要组成部分,有效的 KV Cache 管理策略能够显著提升并发推理性能。通过选择合适的 KV Cache 复用策略,并结合其他优化技巧,可以充分利用 GPU 资源,提高推理吞吐量,降低 latency。 在实际应用中,需要根据具体的模型和应用场景,选择合适的 KV Cache 管理策略。