深入‘跨平台智能营销集群’:Agent 如何在图中同步管理 FB、X、TikTok 的投放数据并自主优化创意素材

各位技术同仁、营销专家们,大家好。

今天,我们将深入探讨一个前沿且极具挑战性的领域:如何构建一个‘跨平台智能营销集群’,并赋予其中的智能代理(Agent)同步管理Facebook (FB)、X (原Twitter) 和TikTok等主流社交媒体广告投放数据,并自主优化创意素材的能力。这不仅仅是技术集成,更是通过智能体实现营销自动化和优化的一场深刻革命。

在当今碎片化的媒体环境中,品牌需要在多个渠道触达用户。然而,每个平台都有其独特的API、数据模型和投放逻辑。手动管理这些平台不仅效率低下,而且难以实现全局最优。我们的目标,就是利用AI和工程化的力量,打破这些壁垒,构建一个统一、智能、自进化的营销系统。

1. 跨平台智能营销集群的宏观构想

想象一下,一个中央大脑,能够实时洞察所有主流广告平台上的表现,自主调整策略,甚至优化广告素材。这就是我们所说的“跨平台智能营销集群”。它不仅仅是一个数据聚合器,更是一个集感知、决策、行动、学习于一体的智能生态系统。

它的核心价值在于:

  • 统一视图与洞察: 将分散在各平台的数据汇聚、清洗、标准化,提供一个全面的、实时的营销绩效视图。
  • 自动化管理: 自动化预算分配、竞价调整、广告启停等操作,减少人工干预。
  • 智能优化: 基于机器学习和数据分析,自主发现优化机会,并执行A/B测试、动态创意优化等策略。
  • 实时响应: 快速响应市场变化和广告表现,实现更敏捷的营销决策。

为了实现这一目标,我们需要一个严谨的架构设计。

表1:跨平台智能营销集群核心组件及其功能

组件名称 主要功能 关键技术栈示例
数据采集层 (Data Ingestion) 负责与FB、X、TikTok等平台的广告API进行交互,周期性或实时地拉取广告活动、广告组、广告创意、受众、投放数据(如展示、点击、花费、转化)等。 Python (requests, SDKs), Celery/Kafka (异步/流式), OAuth 2.0 (认证)
数据湖/数据仓库 (Data Lake/Warehouse) 存储原始的、半结构化的平台数据(数据湖),以及经过清洗、转换、标准化后的结构化数据(数据仓库)。支持OLAP查询和复杂的分析。 AWS S3/MinIO (数据湖), PostgreSQL/ClickHouse/Snowflake (数据仓库)
数据标准化与建模 (Data Normalization) 将不同平台的数据模型映射到统一的内部数据模型,消除平台差异性,方便后续分析和Agent决策。 Python (Pandas), Pydantic (数据模型), ETL工具 (Airflow/Prefect)
创意素材库 (Creative Asset Repository) 存储所有广告创意素材(图片、视频、文本、H5链接等),包括不同版本、元数据(尺寸、格式、标签)、历史表现数据。 AWS S3/MinIO (存储), PostgreSQL (元数据), Redis (缓存)
智能代理核心 (Agent Core) 整个集群的大脑,包含感知、规划、决策和行动模块。 Python (Scikit-learn, PyTorch/TensorFlow), Ray/Dask (分布式计算)
优化引擎 (Optimization Engine) 智能代理核心的一部分,负责执行各种优化算法,如预算分配、竞价策略、A/B测试管理、动态创意优化、受众定位优化等。 Python (SciPy, Optuna, Gym), Reinforcement Learning (RL) frameworks
行动层/API网关 (Action Layer/API Gateway) 智能代理决策的执行者,将优化引擎的指令转换成平台API调用,如修改预算、调整出价、暂停广告、上传新素材等。 Python (requests, SDKs), API Gateway (如Kong/Tyk)
监控与告警 (Monitoring & Alerting) 实时监控系统健康状况、数据流状态、广告表现异常,并触发告警。 Prometheus/Grafana, ELK Stack (Elasticsearch, Logstash, Kibana), Sentry
用户界面/可视化 (UI/Visualization) 提供一个直观的界面,供用户查看数据报告、配置策略、审批Agent建议等。 React/Vue.js (前端), Flask/Django/FastAPI (后端)

2. 数据采集层:打通平台壁垒

数据是智能营销集群的血液。我们需要从FB、X、TikTok的广告平台API中高效、稳定、完整地抽取数据。每个平台的API都有其独特之处,但核心流程类似:认证、请求、解析。

2.1 平台API概览与认证

  • Facebook Marketing API: 功能最全面,数据粒度细,支持广告活动、广告组、广告、创意、受众等全方位管理。认证使用OAuth 2.0,需要获取用户(或系统)的长期访问令牌。
  • X Ads API (Twitter Ads API): 提供广告活动、广告组、广告、创意、受众等管理。认证同样基于OAuth 1.0a 或 OAuth 2.0。
  • TikTok Ads API: 相对较新,但功能日益完善,提供广告活动、广告组、广告、创意、受众、数据报告等接口。认证通常也是OAuth 2.0。

为了统一管理,我们设计一个抽象的PlatformAdapter接口。

# platform_adapter.py
from abc import ABC, abstractmethod
from typing import Dict, Any, List

class PlatformAdapter(ABC):
    """抽象的平台适配器接口"""

    def __init__(self, config: Dict[str, Any]):
        self.config = config
        self._authenticate()

    @abstractmethod
    def _authenticate(self):
        """执行平台特有的认证逻辑"""
        pass

    @abstractmethod
    def fetch_campaigns(self, start_date: str, end_date: str) -> List[Dict]:
        """获取广告活动列表及基本信息"""
        pass

    @abstractmethod
    def fetch_ad_sets(self, campaign_ids: List[str], start_date: str, end_date: str) -> List[Dict]:
        """获取广告组列表及基本信息"""
        pass

    @abstractmethod
    def fetch_ads(self, ad_set_ids: List[str], start_date: str, end_date: str) -> List[Dict]:
        """获取广告列表及基本信息"""
        pass

    @abstractmethod
    def fetch_ad_insights(self, ad_ids: List[str], start_date: str, end_date: str, level: str = 'ad') -> List[Dict]:
        """获取广告表现数据(insights)"""
        pass

    @abstractmethod
    def update_budget(self, entity_id: str, new_budget: float, entity_type: str = 'ad_set') -> bool:
        """更新广告组或广告的预算"""
        pass

    @abstractmethod
    def pause_entity(self, entity_id: str, entity_type: str = 'ad') -> bool:
        """暂停广告活动、广告组或广告"""
        pass

    @abstractmethod
    def activate_entity(self, entity_id: str, entity_type: str = 'ad') -> bool:
        """激活广告活动、广告组或广告"""
        pass

    # 可以根据需要添加更多操作,如上传创意、修改出价等

2.2 具体平台适配器实现示例 (以Facebook为例)

我们将基于Facebook Marketing API的Python SDK或直接使用requests库来实现。这里为了清晰,我们假设使用一个简化的SDK。

# fb_adapter.py
import requests
import json
from datetime import datetime, timedelta
from typing import Dict, Any, List
from platform_adapter import PlatformAdapter

# 假设的Facebook Marketing API SDK或封装
class FacebookApiWrapper:
    def __init__(self, access_token: str, api_version: str = 'v18.0'):
        self.access_token = access_token
        self.api_base = f"https://graph.facebook.com/{api_version}"
        self.headers = {
            "Authorization": f"Bearer {self.access_token}",
            "Content-Type": "application/json"
        }

    def _make_request(self, method: str, path: str, params: Dict = None, data: Dict = None) -> Dict:
        url = f"{self.api_base}/{path}"
        try:
            if method == 'GET':
                response = requests.get(url, headers=self.headers, params=params)
            elif method == 'POST':
                response = requests.post(url, headers=self.headers, params=params, data=json.dumps(data))
            else:
                raise NotImplementedError(f"Method {method} not supported.")

            response.raise_for_status() # Raises HTTPError for bad responses (4xx or 5xx)
            return response.json()
        except requests.exceptions.HTTPError as e:
            print(f"HTTP Error: {e.response.status_code} - {e.response.text}")
            raise
        except requests.exceptions.RequestException as e:
            print(f"Request Error: {e}")
            raise

    def get_ad_accounts(self) -> List[Dict]:
        return self._make_request('GET', 'me/adaccounts').get('data', [])

    def get_campaigns(self, account_id: str, fields: List[str], time_range: Dict) -> List[Dict]:
        params = {
            'fields': ','.join(fields),
            'time_range': json.dumps(time_range)
        }
        return self._make_request('GET', f'{account_id}/campaigns', params=params).get('data', [])

    def get_ad_sets(self, campaign_id: str, fields: List[str], time_range: Dict) -> List[Dict]:
        params = {
            'fields': ','.join(fields),
            'time_range': json.dumps(time_range)
        }
        return self._make_request('GET', f'{campaign_id}/adsets', params=params).get('data', [])

    def get_ads(self, ad_set_id: str, fields: List[str], time_range: Dict) -> List[Dict]:
        params = {
            'fields': ','.join(fields),
            'time_range': json.dumps(time_range)
        }
        return self._make_request('GET', f'{ad_set_id}/ads', params=params).get('data', [])

    def get_insights(self, object_id: str, level: str, fields: List[str], time_range: Dict, breakdown: List[str] = None) -> List[Dict]:
        params = {
            'level': level,
            'fields': ','.join(fields),
            'time_range': json.dumps(time_range)
        }
        if breakdown:
            params['breakdowns'] = ','.join(breakdown)
        return self._make_request('GET', f'{object_id}/insights', params=params).get('data', [])

    def update_ad_set_budget(self, ad_set_id: str, new_budget: float) -> Dict:
        data = {'daily_budget': int(new_budget * 100)} # Budget is in cents
        return self._make_request('POST', f'{ad_set_id}', data=data)

    def update_ad_status(self, ad_id: str, status: str) -> Dict:
        data = {'status': status}
        return self._make_request('POST', f'{ad_id}', data=data)

class FacebookAdapter(PlatformAdapter):
    def __init__(self, config: Dict[str, Any]):
        super().__init__(config)
        self.ad_account_id = config.get('ad_account_id')
        if not self.ad_account_id:
            raise ValueError("FacebookAdapter requires 'ad_account_id' in config.")

    def _authenticate(self):
        access_token = self.config.get('access_token')
        if not access_token:
            raise ValueError("FacebookAdapter requires 'access_token' in config.")
        self.fb_api = FacebookApiWrapper(access_token)
        print("Facebook API authenticated successfully.")

    def _get_time_range(self, start_date: str, end_date: str) -> Dict:
        return {'since': start_date, 'until': end_date}

    def fetch_campaigns(self, start_date: str, end_date: str) -> List[Dict]:
        fields = ['id', 'name', 'status', 'objective', 'buying_type', 'daily_budget', 'lifetime_budget', 'start_time', 'stop_time']
        return self.fb_api.get_campaigns(self.ad_account_id, fields, self._get_time_range(start_date, end_date))

    def fetch_ad_sets(self, campaign_ids: List[str], start_date: str, end_date: str) -> List[Dict]:
        all_ad_sets = []
        fields = ['id', 'name', 'status', 'campaign_id', 'daily_budget', 'lifetime_budget', 'bid_strategy', 'billing_event', 'optimization_goal', 'targeting']
        for campaign_id in campaign_ids:
            ad_sets = self.fb_api.get_ad_sets(campaign_id, fields, self._get_time_range(start_date, end_date))
            all_ad_sets.extend(ad_sets)
        return all_ad_sets

    def fetch_ads(self, ad_set_ids: List[str], start_date: str, end_date: str) -> List[Dict]:
        all_ads = []
        fields = ['id', 'name', 'status', 'adset_id', 'campaign_id', 'creative', 'ad_review_feedback']
        for ad_set_id in ad_set_ids:
            ads = self.fb_api.get_ads(ad_set_id, fields, self._get_time_range(start_date, end_date))
            all_ads.extend(ads)
        return all_ads

    def fetch_ad_insights(self, ad_ids: List[str], start_date: str, end_date: str, level: str = 'ad') -> List[Dict]:
        insights_fields = [
            'impressions', 'clicks', 'spend', 'cpc', 'cpm', 'ctr', 'conversions',
            'website_conversions', 'purchase_roas', 'actions', 'action_values'
        ]
        all_insights = []
        # Facebook insights API usually takes an account ID or list of object IDs for insights.
        # For simplicity, we'll fetch insights per ad, but a more efficient way is to query at account level with 'ad' breakdown.
        for ad_id in ad_ids:
            insights = self.fb_api.get_insights(ad_id, level, insights_fields, self._get_time_range(start_date, end_date))
            for insight in insights:
                insight['ad_id'] = ad_id # Add ad_id to insights for easier joining later
            all_insights.extend(insights)
        return all_insights

    def update_budget(self, entity_id: str, new_budget: float, entity_type: str = 'ad_set') -> bool:
        if entity_type == 'ad_set':
            try:
                self.fb_api.update_ad_set_budget(entity_id, new_budget)
                return True
            except Exception as e:
                print(f"Failed to update Facebook Ad Set budget for {entity_id}: {e}")
                return False
        # Add logic for campaign budget update if needed
        return False

    def pause_entity(self, entity_id: str, entity_type: str = 'ad') -> bool:
        try:
            if entity_type == 'ad':
                self.fb_api.update_ad_status(entity_id, 'PAUSED')
            elif entity_type == 'ad_set':
                # Similar logic for ad set pausing, requires different API call
                pass
            return True
        except Exception as e:
            print(f"Failed to pause Facebook {entity_type} {entity_id}: {e}")
            return False

    def activate_entity(self, entity_id: str, entity_type: str = 'ad') -> bool:
        try:
            if entity_type == 'ad':
                self.fb_api.update_ad_status(entity_id, 'ACTIVE')
            elif entity_type == 'ad_set':
                # Similar logic for ad set activation
                pass
            return True
        except Exception as e:
            print(f"Failed to activate Facebook {entity_type} {entity_id}: {e}")
            return False

# 同样可以实现 TwitterAdapter 和 TikTokAdapter
# ...

通过这种适配器模式,我们隔离了平台特有的API细节,使得上层Agent可以与一个统一的接口进行交互。

3. 统一数据模型与数据湖/仓库

从各平台采集到的原始数据格式迥异。为了进行统一分析和Agent决策,必须进行标准化。

3.1 数据标准化:构建统一数据Schema

我们将定义一套核心的数据模型,涵盖广告营销的关键实体和指标。

# data_models.py
from pydantic import BaseModel, Field
from typing import Optional, List, Dict
from datetime import datetime

class AdPlatformEnum:
    FACEBOOK = "facebook"
    X = "x"
    TIKTOK = "tiktok"

class Campaign(BaseModel):
    id: str
    platform: AdPlatformEnum
    platform_campaign_id: str
    name: str
    status: str # ACTIVE, PAUSED, DELETED
    objective: Optional[str] = None
    daily_budget: Optional[float] = None
    lifetime_budget: Optional[float] = None
    start_time: Optional[datetime] = None
    stop_time: Optional[datetime] = None
    created_at: datetime = Field(default_factory=datetime.utcnow)
    updated_at: datetime = Field(default_factory=datetime.utcnow)

class AdSet(BaseModel):
    id: str
    platform: AdPlatformEnum
    platform_ad_set_id: str
    campaign_id: str # Internal campaign ID
    name: str
    status: str
    daily_budget: Optional[float] = None
    lifetime_budget: Optional[float] = None
    bid_strategy: Optional[str] = None
    optimization_goal: Optional[str] = None
    targeting: Optional[Dict] = None # Store raw targeting JSON
    created_at: datetime = Field(default_factory=datetime.utcnow)
    updated_at: datetime = Field(default_factory=datetime.utcnow)

class AdCreative(BaseModel):
    id: str
    platform: AdPlatformEnum
    platform_creative_id: str
    name: Optional[str] = None
    creative_type: str # IMAGE, VIDEO, TEXT, CAROUSEL
    # Pointers to actual assets in Creative Asset Repository
    image_url: Optional[str] = None
    video_url: Optional[str] = None
    text_content: Optional[str] = None
    headline: Optional[str] = None
    call_to_action: Optional[str] = None
    thumbnail_url: Optional[str] = None
    asset_repo_id: Optional[str] = None # Link to the CreativeAssetRepository
    created_at: datetime = Field(default_factory=datetime.utcnow)
    updated_at: datetime = Field(default_factory=datetime.utcnow)

class Ad(BaseModel):
    id: str
    platform: AdPlatformEnum
    platform_ad_id: str
    ad_set_id: str # Internal ad set ID
    campaign_id: str # Internal campaign ID
    creative_id: str # Internal creative ID
    name: str
    status: str
    preview_url: Optional[str] = None
    created_at: datetime = Field(default_factory=datetime.utcnow)
    updated_at: datetime = Field(default_factory=datetime.utcnow)

class PerformanceMetric(BaseModel):
    id: str = Field(default_factory=lambda: str(uuid.uuid4())) # Unique ID for each metric record
    platform: AdPlatformEnum
    ad_id: str # Internal ad ID
    date: datetime
    impressions: int = 0
    clicks: int = 0
    spend: float = 0.0 # In USD or a standardized currency
    conversions: int = 0
    cpa: Optional[float] = None # Cost Per Action/Acquisition
    ctr: Optional[float] = None # Click Through Rate
    cpm: Optional[float] = None # Cost Per Mille
    cpc: Optional[float] = None # Cost Per Click
    roas: Optional[float] = None # Return On Ad Spend
    # Add more specific conversion types if needed, e.g., purchases, leads
    purchase_conversions: int = 0
    purchase_value: float = 0.0
    created_at: datetime = Field(default_factory=datetime.utcnow)

通过Pydantic模型,我们强制了数据结构的一致性。ETL(Extract, Transform, Load)流程会从原始平台数据中提取信息,转换成这些统一模型,并加载到数据仓库中。

3.2 数据湖与数据仓库

  • 数据湖 (Data Lake): 存储原始的、未经处理的平台API响应JSON。这对于未来调试、回溯和重新处理数据至关重要。可以利用AWS S3或MinIO等对象存储服务。
  • 数据仓库 (Data Warehouse): 存储经过标准化和清洗后的结构化数据。PostgreSQL适用于事务性数据和元数据,而ClickHouse或Snowflake等列式数据库则更适合高性能的OLAP查询和大规模时间序列数据分析。

ETL流程示意:

# etl_processor.py
import uuid
from typing import List
from datetime import datetime
from data_models import Campaign, AdSet, AdCreative, Ad, PerformanceMetric, AdPlatformEnum
from fb_adapter import FacebookAdapter # 假设其他适配器也已导入

class ETLProcessor:
    def __init__(self, db_connector):
        self.db_connector = db_connector # 数据库连接器,用于将数据写入DB

    def _map_fb_campaign_to_unified(self, fb_campaign_data: Dict) -> Campaign:
        # 实际映射逻辑会更复杂,需要处理各种边缘情况和默认值
        return Campaign(
            id=str(uuid.uuid4()), # 生成内部唯一ID
            platform=AdPlatformEnum.FACEBOOK,
            platform_campaign_id=fb_campaign_data['id'],
            name=fb_campaign_data.get('name', 'N/A'),
            status=fb_campaign_data.get('status', 'UNKNOWN'),
            objective=fb_campaign_data.get('objective'),
            daily_budget=float(fb_campaign_data.get('daily_budget', 0)) / 100 if 'daily_budget' in fb_campaign_data else None,
            lifetime_budget=float(fb_campaign_data.get('lifetime_budget', 0)) / 100 if 'lifetime_budget' in fb_campaign_data else None,
            start_time=datetime.fromisoformat(fb_campaign_data['start_time']) if 'start_time' in fb_campaign_data else None,
            stop_time=datetime.fromisoformat(fb_campaign_data['stop_time']) if 'stop_time' in fb_campaign_data else None,
        )

    def _map_fb_ad_insights_to_unified(self, fb_insight_data: Dict) -> PerformanceMetric:
        # 计算CTR, CPM, CPA, ROAS等指标
        impressions = int(fb_insight_data.get('impressions', 0))
        clicks = int(fb_insight_data.get('clicks', 0))
        spend = float(fb_insight_data.get('spend', 0))
        conversions = int(fb_insight_data.get('conversions', 0)) # simplified

        ctr = (clicks / impressions * 100) if impressions > 0 else 0
        cpm = (spend / impressions * 1000) if impressions > 0 else 0
        cpc = (spend / clicks) if clicks > 0 else 0
        cpa = (spend / conversions) if conversions > 0 else 0
        roas = (float(fb_insight_data.get('purchase_value', 0)) / spend) if spend > 0 else 0 # Assuming 'purchase_value' from actions

        return PerformanceMetric(
            platform=AdPlatformEnum.FACEBOOK,
            ad_id=fb_insight_data['ad_id'], # This 'ad_id' should be our internal ID, not platform_ad_id
            date=datetime.strptime(fb_insight_data['date_start'], '%Y-%m-%d'),
            impressions=impressions,
            clicks=clicks,
            spend=spend,
            conversions=conversions,
            ctr=ctr,
            cpm=cpm,
            cpc=cpc,
            cpa=cpa,
            roas=roas
        )

    def run_etl_for_platform(self, platform_adapter: PlatformAdapter, start_date: str, end_date: str):
        print(f"Running ETL for {platform_adapter.__class__.__name__} from {start_date} to {end_date}")

        # Step 1: Fetch Campaigns
        platform_campaigns = platform_adapter.fetch_campaigns(start_date, end_date)
        unified_campaigns = []
        platform_campaign_id_map = {} # Map platform ID to internal ID
        for pc in platform_campaigns:
            unified_campaign = self._map_fb_campaign_to_unified(pc) # Placeholder for actual mapping
            unified_campaigns.append(unified_campaign)
            platform_campaign_id_map[unified_campaign.platform_campaign_id] = unified_campaign.id
        self.db_connector.save_campaigns(unified_campaigns)

        # Step 2: Fetch Ad Sets
        platform_ad_sets = platform_adapter.fetch_ad_sets(list(platform_campaign_id_map.keys()), start_date, end_date)
        # ... map to unified AdSet model and save ...

        # Step 3: Fetch Ads and Creatives
        platform_ads = platform_adapter.fetch_ads([ad_set['id'] for ad_set in platform_ad_sets], start_date, end_date)
        # ... map to unified Ad and AdCreative models and save ...

        # Step 4: Fetch Ad Insights
        platform_ad_ids = [ad['id'] for ad in platform_ads] # Assuming ad has a 'platform_ad_id'
        platform_insights = platform_adapter.fetch_ad_insights(platform_ad_ids, start_date, end_date)
        unified_insights = []
        for pi in platform_insights:
            # Need to resolve internal ad_id from platform_ad_id
            internal_ad_id = "some_internal_id_from_mapping" # This mapping logic needs to be robust
            pi['ad_id'] = internal_ad_id
            unified_insights.append(self._map_fb_ad_insights_to_unified(pi))
        self.db_connector.save_performance_metrics(unified_insights)

        print(f"ETL for {platform_adapter.__class__.__name__} completed.")

# 数据库连接器示例 (简化)
class DatabaseConnector:
    def save_campaigns(self, campaigns: List[Campaign]):
        print(f"Saving {len(campaigns)} campaigns to DB...")
        # Placeholder for actual DB write logic (e.g., SQLAlchemy, psycopg2)
        # In a real system, this would involve batch inserts/updates.

    def save_performance_metrics(self, metrics: List[PerformanceMetric]):
        print(f"Saving {len(metrics)} performance metrics to DB...")
        # Placeholder for actual DB write logic

# Usage example:
# fb_config = {"access_token": "YOUR_FB_ACCESS_TOKEN", "ad_account_id": "YOUR_AD_ACCOUNT_ID"}
# fb_adapter = FacebookAdapter(fb_config)
# db_conn = DatabaseConnector()
# etl_processor = ETLProcessor(db_conn)
# etl_processor.run_etl_for_platform(fb_adapter, "2023-01-01", "2023-01-31")

4. 创意素材管理系统

广告创意是营销的核心。一个高效的创意素材管理系统不仅要存储素材本身,还要管理其元数据、版本、关联的广告及历史表现。

# creative_asset_repository.py
import uuid
from typing import Dict, Any, Optional
from datetime import datetime
from pydantic import BaseModel, Field

class CreativeAssetTypeEnum:
    IMAGE = "image"
    VIDEO = "video"
    TEXT = "text"
    HTML = "html"

class CreativeAsset(BaseModel):
    id: str = Field(default_factory=lambda: str(uuid.uuid4()))
    asset_type: CreativeAssetTypeEnum
    name: str
    description: Optional[str] = None
    file_path: Optional[str] = None # S3 URL or local path for images/videos
    content: Optional[str] = None # Actual text content for text creatives, or HTML
    tags: List[str] = Field(default_factory=list) # e.g., ['product_A', 'summer_campaign', 'female_audience']
    platform_compatibility: List[AdPlatformEnum] = Field(default_factory=list) # Which platforms this asset can be used on
    versions: Dict[str, Any] = Field(default_factory=dict) # History of changes/versions
    created_at: datetime = Field(default_factory=datetime.utcnow)
    updated_at: datetime = Field(default_factory=datetime.utcnow)

    # Performance metrics can be linked externally via AdCreative model,
    # or aggregated here for a high-level view of asset performance across ads.

class CreativeAssetRepository:
    def __init__(self, storage_backend): # storage_backend could be an S3 client
        self.storage_backend = storage_backend
        self.assets_db = {} # In-memory dict for simplicity, replace with actual DB

    def upload_asset(self, asset_file_path: str, asset_type: CreativeAssetTypeEnum, name: str, tags: List[str] = None) -> CreativeAsset:
        # In a real system, upload to S3 and get URL
        s3_url = f"s3://my-bucket/{asset_type}/{uuid.uuid4()}-{name}"
        # self.storage_backend.upload_file(asset_file_path, s3_url)

        new_asset = CreativeAsset(
            asset_type=asset_type,
            name=name,
            file_path=s3_url,
            tags=tags if tags else [],
            platform_compatibility=[AdPlatformEnum.FACEBOOK, AdPlatformEnum.X, AdPlatformEnum.TIKTOK] # Example
        )
        self.assets_db[new_asset.id] = new_asset
        print(f"Uploaded asset: {new_asset.name} with ID: {new_asset.id}")
        return new_asset

    def get_asset(self, asset_id: str) -> Optional[CreativeAsset]:
        return self.assets_db.get(asset_id)

    def update_asset_metadata(self, asset_id: str, new_metadata: Dict) -> Optional[CreativeAsset]:
        asset = self.get_asset(asset_id)
        if asset:
            for key, value in new_metadata.items():
                setattr(asset, key, value)
            asset.updated_at = datetime.utcnow()
            print(f"Updated asset {asset_id} metadata.")
            return asset
        return None

    def find_assets_by_tags(self, tags: List[str]) -> List[CreativeAsset]:
        found_assets = []
        for asset in self.assets_db.values():
            if all(tag in asset.tags for tag in tags):
                found_assets.append(asset)
        return found_assets

# S3 Client mock
class S3ClientMock:
    def upload_file(self, local_path, s3_path):
        print(f"Mock S3: Uploading {local_path} to {s3_path}")
    def get_file_url(self, s3_path):
        return f"http://mock-cdn.com/{s3_path.split('/')[-1]}"

# Usage
# creative_repo = CreativeAssetRepository(S3ClientMock())
# image_asset = creative_repo.upload_asset("path/to/image.jpg", CreativeAssetTypeEnum.IMAGE, "Summer Sale Banner", tags=['sale', 'summer'])
# text_creative = CreativeAsset(asset_type=CreativeAssetTypeEnum.TEXT, name="Catchy Headline", content="Click here for amazing deals!")
# creative_repo.assets_db[text_creative.id] = text_creative

5. 智能代理核心:感知、决策与行动

智能代理是整个集群的大脑。它通过感知模块获取数据,通过优化引擎进行决策,并通过行动模块执行决策。

5.1 感知模块:数据驱动的洞察

感知模块持续从数据仓库中读取最新的广告表现数据、创意数据、受众数据等。它将这些原始数据转化为Agent可以理解的状态表示。

# agent_core.py
import pandas as pd
from datetime import datetime, timedelta
from typing import List, Dict, Any, Optional
# 假设db_connector可以查询我们定义好的Pydantic模型数据

class PerceptionModule:
    def __init__(self, db_connector):
        self.db_connector = db_connector

    def get_recent_performance(self, platform: str, ad_ids: List[str], days: int = 7) -> pd.DataFrame:
        end_date = datetime.utcnow()
        start_date = end_date - timedelta(days=days)
        # In a real system, this would query the PerformanceMetric table
        # For simplicity, returning dummy data
        data = []
        for ad_id in ad_ids:
            for i in range(days):
                date = start_date + timedelta(days=i)
                data.append({
                    'ad_id': ad_id,
                    'date': date,
                    'impressions': 1000 + i * 50 + (hash(ad_id) % 100),
                    'clicks': 10 + i * 2 + (hash(ad_id) % 5),
                    'spend': 50 + i * 3 + (hash(ad_id) % 10),
                    'conversions': 1 + (hash(ad_id) % 2)
                })
        df = pd.DataFrame(data)
        df['ctr'] = df['clicks'] / df['impressions']
        df['cpa'] = df['spend'] / df['conversions']
        return df

    def get_active_ads_and_creatives(self, platform: str) -> Dict[str, Any]:
        # Query active ads and their associated creative IDs
        # For simplicity, return dummy data
        ads = [
            {'id': 'internal_ad_1', 'platform_ad_id': 'fb_ad_1', 'creative_id': 'creative_A', 'status': 'ACTIVE', 'ad_set_id': 'ad_set_1'},
            {'id': 'internal_ad_2', 'platform_ad_id': 'fb_ad_2', 'creative_id': 'creative_B', 'status': 'ACTIVE', 'ad_set_id': 'ad_set_1'},
            {'id': 'internal_ad_3', 'platform_ad_id': 'fb_ad_3', 'creative_id': 'creative_A', 'status': 'ACTIVE', 'ad_set_id': 'ad_set_2'},
        ]
        creatives = {
            'creative_A': {'id': 'creative_A', 'name': 'Headline_V1', 'content': 'Amazing offer!'},
            'creative_B': {'id': 'creative_B', 'name': 'Headline_V2', 'content': 'Don't miss out!'},
            'creative_C': {'id': 'creative_C', 'name': 'Image_V1', 'image_url': 'http://cdn.example.com/img1.jpg'},
        }
        return {'ads': ads, 'creatives': creatives}

5.2 优化引擎:智能决策的核心

优化引擎是Agent的“大脑”,它根据感知模块提供的数据,运用各种算法来制定优化策略。

5.2.1 目标设定与指标
  • 业务目标: 提高ROI (Return on Investment), 降低CPA (Cost Per Acquisition), 提高CTR (Click-Through Rate), 增加品牌曝光。
  • Agent目标: 将业务目标转化为可量化的优化指标,例如,当CPA高于阈值时,暂停广告或调整出价;当CTR低于基线时,优化创意。
5.2.2 优化算法示例
  • 多臂老虎机 (Multi-armed Bandit, MAB): 尤其适用于创意素材的A/B测试。MAB算法能够动态地分配流量给表现更好的创意,从而在探索(找到最佳创意)和利用(投放最佳创意)之间取得平衡,比传统A/B测试更高效。
# optimization_engine.py
import numpy as np
import pandas as pd
from typing import Dict, List, Any
from collections import defaultdict

class MultiArmedBanditCreativeOptimizer:
    def __init__(self, epsilon: float = 0.1, decay_rate: float = 0.99):
        self.epsilon = epsilon  # Exploration rate
        self.decay_rate = decay_rate # Epsilon decay per decision cycle
        self.creative_stats = defaultdict(lambda: {'trials': 0, 'successes': 0, 'value_sum': 0.0}) # {creative_id: {trials, successes, value_sum}}

    def update_stats(self, creative_id: str, reward: float, is_success: bool = False):
        self.creative_stats[creative_id]['trials'] += 1
        self.creative_stats[creative_id]['value_sum'] += reward
        if is_success:
            self.creative_stats[creative_id]['successes'] += 1

    def calculate_ucb(self, creative_id: str, total_trials: int) -> float:
        stats = self.creative_stats[creative_id]
        if stats['trials'] == 0:
            return float('inf') # Infinite for un-sampled arms

        # UCB1 formula: average_reward + exploration_term
        average_reward = stats['value_sum'] / stats['trials']
        exploration_term = np.sqrt(2 * np.log(total_trials) / stats['trials'])
        return average_reward + exploration_term

    def choose_creative(self, available_creative_ids: List[str]) -> str:
        # Epsilon-greedy strategy with UCB as tie-breaker/exploitation
        self.epsilon *= self.decay_rate # Decay epsilon over time

        if np.random.rand() < self.epsilon:
            # Explore: choose a random creative
            print(f"Exploring (epsilon={self.epsilon:.4f}). Choosing random creative.")
            return np.random.choice(available_creative_ids)
        else:
            # Exploit: choose the best creative based on UCB or simple average
            print(f"Exploiting (epsilon={self.epsilon:.4f}). Choosing best creative.")
            best_creative = None
            best_score = -1
            total_trials = sum(stats['trials'] for stats in self.creative_stats.values())

            for creative_id in available_creative_ids:
                if total_trials == 0: # If no trials yet, choose randomly or based on initial priority
                    score = 0 # Fallback for initial state
                else:
                    score = self.calculate_ucb(creative_id, total_trials)

                if score > best_score:
                    best_score = score
                    best_creative = creative_id

            if best_creative is None and available_creative_ids: # Fallback if all scores are -1 (e.g. all have 0 trials)
                return np.random.choice(available_creative_ids)

            return best_creative if best_creative else available_creative_ids[0] # Ensure a creative is always returned

class OptimizationEngine:
    def __init__(self, db_connector, creative_repo):
        self.db_connector = db_connector
        self.creative_repo = creative_repo
        self.mab_optimizer = MultiArmedBanditCreativeOptimizer()

    def analyze_and_optimize_creatives(self, current_ads_data: Dict[str, Any], performance_df: pd.DataFrame, target_metric: str = 'ctr'):
        print("n--- Analyzing and Optimizing Creatives ---")
        ads = current_ads_data['ads']
        creatives = current_ads_data['creatives']

        # Group ads by ad_set to apply optimization within each ad set
        ad_sets_to_optimize = defaultdict(list)
        for ad in ads:
            if ad['status'] == 'ACTIVE':
                ad_sets_to_optimize[ad['ad_set_id']].append(ad)

        optimization_suggestions = []

        for ad_set_id, active_ads_in_set in ad_sets_to_optimize.items():
            print(f"Optimizing Ad Set: {ad_set_id}")
            ad_ids_in_set = [ad['id'] for ad in active_ads_in_set]

            # Fetch performance for these ads
            ad_performance = performance_df[performance_df['ad_id'].isin(ad_ids_in_set)]

            if ad_performance.empty:
                print(f"No performance data for ad set {ad_set_id}. Skipping creative optimization.")
                continue

            # Update MAB optimizer with recent performance
            for _, row in ad_performance.iterrows():
                creative_id = next((ad['creative_id'] for ad in active_ads_in_set if ad['id'] == row['ad_id']), None)
                if creative_id:
                    reward = row[target_metric] # e.g., CTR
                    self.mab_optimizer.update_stats(creative_id, reward)

            # Get available creatives for this ad set (simplified: all creatives are available)
            available_creative_ids = list(creatives.keys())

            # Choose the best creative for this ad set using MAB
            best_creative_id = self.mab_optimizer.choose_creative(available_creative_ids)
            print(f"MAB suggests best creative for {ad_set_id}: {best_creative_id}")

            # Suggest actions: pause underperforming ads, or create new ads with the best creative
            for ad in active_ads_in_set:
                if ad['creative_id'] != best_creative_id:
                    # If an ad is using a different creative than the MAB's suggestion,
                    # we might suggest pausing it or replacing its creative.
                    # For simplicity, let's suggest pausing it if it's not the best.
                    ad_current_performance = ad_performance[ad_performance['ad_id'] == ad['id']]
                    if not ad_current_performance.empty and ad_current_performance[target_metric].mean() < ad_performance[target_metric].mean():
                        optimization_suggestions.append({
                            'action_type': 'PAUSE_AD',
                            'ad_id': ad['id'],
                            'platform_ad_id': ad['platform_ad_id'],
                            'reason': f"Creative '{ad['creative_id']}' underperforming compared to '{best_creative_id}' in ad set {ad_set_id} based on {target_metric}."
                        })
                # In a more advanced scenario, we might suggest creating a new ad with the best_creative_id
                # if there isn't one already active.

        return optimization_suggestions

    def analyze_and_optimize_budgets(self, campaigns_df: pd.DataFrame, performance_df: pd.DataFrame, goal_cpa: float = 10.0):
        print("n--- Analyzing and Optimizing Budgets ---")
        budget_suggestions = []

        # Example: Simple budget reallocation based on CPA
        # Identify ad sets with high CPA and low CPA
        for _, row in campaigns_df.iterrows():
            campaign_id = row['id']
            ad_sets_in_campaign = self.db_connector.get_ad_sets_by_campaign(campaign_id) # Need to implement this DB method

            for ad_set in ad_sets_in_campaign:
                ad_set_ads_performance = performance_df[performance_df['ad_set_id'] == ad_set.id]
                if ad_set_ads_performance.empty:
                    continue

                avg_cpa = ad_set_ads_performance['cpa'].mean()
                current_budget = ad_set.daily_budget

                if avg_cpa > goal_cpa * 1.2 and current_budget > 10: # Significantly over target CPA
                    new_budget = max(current_budget * 0.8, 10) # Reduce budget by 20%, but not below 10
                    budget_suggestions.append({
                        'action_type': 'UPDATE_AD_SET_BUDGET',
                        'ad_set_id': ad_set.id,
                        'platform_ad_set_id': ad_set.platform_ad_set_id,
                        'new_budget': new_budget,
                        'reason': f"CPA {avg_cpa:.2f} > {goal_cpa * 1.2:.2f}. Reducing budget."
                    })
                elif avg_cpa < goal_cpa * 0.8 and current_budget < 500: # Significantly under target CPA, performing well
                    new_budget = min(current_budget * 1.2, 500) # Increase budget by 20%, but not above 500
                    budget_suggestions.append({
                        'action_type': 'UPDATE_AD_SET_BUDGET',
                        'ad_set_id': ad_set.id,
                        'platform_ad_set_id': ad_set.platform_ad_set_id,
                        'new_budget': new_budget,
                        'reason': f"CPA {avg_cpa:.2f} < {goal_cpa * 0.8:.2f}. Increasing budget."
                    })
        return budget_suggestions

5.3 行动模块:将决策转化为现实

行动模块负责将优化引擎的决策转换为具体的平台API调用。

# agent_core.py (continued)
class ActionModule:
    def __init__(self, platform_adapters: Dict[str, PlatformAdapter]):
        self.platform_adapters = platform_adapters

    def execute_suggestions(self, suggestions: List[Dict]):
        print("n--- Executing Agent Suggestions ---")
        for suggestion in suggestions:
            action_type = suggestion['action_type']
            platform_id = suggestion.get('platform', AdPlatformEnum.FACEBOOK) # Assuming platform is part of suggestion
            adapter = self.platform_adapters.get(platform_id)

            if not adapter:
                print(f"Error: No adapter found for platform {platform_id}. Skipping {action_type}.")
                continue

            try:
                if action_type == 'PAUSE_AD':
                    ad_id = suggestion['platform_ad_id']
                    print(f"Pausing ad {ad_id} on {platform_id}. Reason: {suggestion.get('reason', 'N/A')}")
                    adapter.pause_entity(ad_id, entity_type='ad')
                elif action_type == 'UPDATE_AD_SET_BUDGET':
                    ad_set_id = suggestion['platform_ad_set_id']
                    new_budget = suggestion['new_budget']
                    print(f"Updating ad set {ad_set_id} budget to {new_budget} on {platform_id}. Reason: {suggestion.get('reason', 'N/A')}")
                    adapter.update_budget(ad_set_id, new_budget, entity_type='ad_set')
                # Add more action types as needed: ACTIVATE_AD, CREATE_AD, UPDATE_CREATIVE, etc.
                else:
                    print(f"Unknown action type: {action_type}. Skipping.")
            except Exception as e:
                print(f"Failed to execute action {action_type} for {platform_id}: {e}")

class IntelligentAgent:
    def __init__(self, db_connector, creative_repo, platform_adapters: Dict[str, PlatformAdapter]):
        self.perception = PerceptionModule(db_connector)
        self.optimization_engine = OptimizationEngine(db_connector, creative_repo)
        self.action_module = ActionModule(platform_adapters)
        self.db_connector = db_connector # For passing to optimization engine

    def run_cycle(self):
        print("--- Agent Run Cycle Started ---")
        # 1. Perceive: Get latest data for all platforms
        all_platform_ads_data = {}
        all_performance_dfs = []
        all_campaigns_data = [] # Placeholder for campaigns data

        for platform_name, adapter in self.platform_adapters.items():
            print(f"Perceiving data for {platform_name}...")
            # In a real scenario, this would involve fetching data from our unified DB, not directly from adapters
            # For this example, we'll simulate fetching internal IDs and then their performance

            # This is a simplification; in reality, we'd query our unified DB for ads with internal IDs
            # and then fetch performance metrics based on those internal IDs.
            # Let's assume perception module already has access to internal IDs and maps them.

            # Dummy data for demonstration
            active_entities = self.perception.get_active_ads_and_creatives(platform_name) # This should query our unified DB
            all_platform_ads_data[platform_name] = active_entities

            internal_ad_ids = [ad['id'] for ad in active_entities['ads']]
            performance_df = self.perception.get_recent_performance(platform_name, internal_ad_ids, days=7)
            performance_df['platform'] = platform_name # Add platform column
            all_performance_dfs.append(performance_df)

            # Get campaign data (simplified)
            # campaigns = self.db_connector.get_all_campaigns(platform_name) # Need to implement this in DBConnector
            # all_campaigns_data.extend(campaigns)

        if not all_performance_dfs:
            print("No performance data to analyze. Agent cycle finished.")
            return

        unified_performance_df = pd.concat(all_performance_dfs, ignore_index=True)
        # unified_campaigns_df = pd.DataFrame([c.dict() for c in all_campaigns_data]) # Convert to DataFrame

        # 2. Decide/Optimize:
        all_suggestions = []
        for platform_name, ads_data in all_platform_ads_data.items():
            platform_performance_df = unified_performance_df[unified_performance_df['platform'] == platform_name]

            # Creative Optimization
            creative_suggestions = self.optimization_engine.analyze_and_optimize_creatives(
                ads_data, platform_performance_df, target_metric='ctr'
            )
            for s in creative_suggestions: s['platform'] = platform_name
            all_suggestions.extend(creative_suggestions)

            # Budget Optimization (requires campaign/ad_set data, simplified here)
            # budget_suggestions = self.optimization_engine.analyze_and_optimize_budgets(
            #    unified_campaigns_df, platform_performance_df, goal_cpa=15.0
            # )
            # for s in budget_suggestions: s['platform'] = platform_name
            # all_suggestions.extend(budget_suggestions)

        # 3. Act: Execute decisions
        self.action_module.execute_suggestions(all_suggestions)

        print("--- Agent Run Cycle Finished ---")

6. 自主优化创意素材的深入探讨

创意素材的自主优化是智能营销集群的亮点之一。这不仅仅是A/B测试,更是动态、持续的自我学习过程。

6.1 创意变体生成与管理

Agent不只是选择现有创意,还可以基于表现数据,智能地生成新的创意变体。

  • 文本创意: 利用大型语言模型 (LLM),基于表现好的标题、描述、CTA,生成语义相似但措辞不同的变体。例如,如果“限时抢购!”效果好,LLM可以生成“立即体验独家优惠!”、“优惠倒计时!”等。
  • 图像/视频创意:
    • 元素级优化: 对图像的背景色、按钮颜色、字体、产品突出方式等进行微调。
    • 组合优化: 智能组合不同的标题、描述、图片/视频,形成新的广告单元。例如,Agent可以学习到某个产品搭配特定颜色背景的图片,以及某种情绪的标题,效果最佳。
  • 元数据丰富: 自动为创意打标签(如情感、主题、产品类别),以便更好地分类、搜索和推荐。
# creative_generator.py
import random
from typing import List, Dict, Any
from data_models import AdCreative, CreativeAssetTypeEnum, AdPlatformEnum
from creative_asset_repository import CreativeAssetRepository

class CreativeVariantGenerator:
    def __init__(self, creative_repo: CreativeAssetRepository):
        self.creative_repo = creative_repo
        # Assume an LLM integration for text generation
        # self.llm_client = LLMClient() 

    def generate_text_variants(self, base_creative: AdCreative, num_variants: int = 3) -> List[AdCreative]:
        if base_creative.asset_type != CreativeAssetTypeEnum.TEXT or not base_creative.content:
            return []

        variants = []
        print(f"Generating {num_variants} text variants for creative '{base_creative.name}'...")
        for i in range(num_variants):
            # In a real system, call LLM to generate new text based on base_creative.content
            # For now, a simple permutation or slight modification
            new_content = f"{base_creative.content} - V{i+2}" # Simple variant suffix
            new_name = f"{base_creative.name} V{i+2}"

            variant = AdCreative(
                platform=base_creative.platform,
                platform_creative_id=f"{base_creative.platform_creative_id}_variant_{i}", # Dummy ID
                name=new_name,
                creative_type=CreativeAssetTypeEnum.TEXT,
                text_content=new_content,
                headline=base_creative.headline,
                call_to_action=base_creative.call_to_action,
                asset_repo_id=base_creative.asset_repo_id # Link to original asset if applicable
            )
            # Store new variant in the creative repo (or just return for agent to handle)
            self.creative_repo.assets_db[variant.id] = variant
            variants.append(variant)
        return variants

    def combine_creative_elements(self, headlines: List[AdCreative], images: List[AdCreative], calls_to_action: List[str]) -> List[Dict]:
        """
        Combines different headlines, images, and CTAs to create new ad concepts.
        Returns a list of dictionaries, each representing a new creative idea.
        """
        combined_ideas = []
        for headline in headlines:
            for image in images:
                for cta in calls_to_action:
                    idea = {
                        "headline_id": headline.id,
                        "image_id": image.id,
                        "call_to_action": cta,
                        "name": f"{headline.name} + {image.name} + {cta}"
                    }
                    combined_ideas.append(idea)
        print(f"Generated {len(combined_ideas)} new combined creative ideas.")
        return combined_ideas

# Usage in Agent:
# creative_gen = CreativeVariantGenerator(creative_repo)
# base_text_creative = creative_repo.get_asset('text_creative_id') # Assume this exists
# if base_text_creative:
#     new_text_variants = creative_gen.generate_text_variants(base_text_creative)
#     # Agent can then decide to upload these to platforms and test them.

6.2 动态创意优化 (DCO) 与强化学习

DCO允许广告系统实时地根据用户特征(如地域、兴趣、行为)和广告表现,动态组合最佳的创意元素(图片、视频、标题、描述、CTA)。

Agent可以通过强化学习 (Reinforcement Learning, RL) 来驱动DCO。

  • 环境 (Environment): 广告平台和用户互动。
  • 状态 (State): 当前用户特征、广告位、历史创意表现、预算等。
  • 动作 (Action): 选择哪个创意元素组合来展示。
  • 奖励 (Reward): 用户点击、转化、ROI等。

RL Agent通过不断试错,学习在不同状态下采取何种动作能够获得最大奖励,从而实现创意素材的自主优化。

# Simplified Reinforcement Learning Agent for DCO (Conceptual)
class DCOAgent:
    def __init__(self, creative_elements: Dict[str, List[str]], # e.g., {'headlines': [h1,h2], 'images': [i1,i2]}
                 epsilon: float = 0.1, learning_rate: float = 0.01):
        self.creative_elements = creative_elements
        self.epsilon = epsilon
        self.learning_rate = learning_rate

        # Q-table: (state, action) -> Q_value
        # State could be (user_segment, ad_placement)
        # Action could be (headline_id, image_id, cta_id)
        self.q_table = defaultdict(lambda: 0.0) # For simplicity, let's use a flat Q-table for now
        self.num_actions = self._get_num_possible_combinations()

    def _get_num_possible_combinations(self):
        count = 1
        for category in self.creative_elements.values():
            count *= len(category)
        return count

    def _get_action_from_combination(self, combination: Dict[str, str]) -> str:
        # Convert a combination dict to a unique string key for Q-table
        return json.dumps(combination, sort_keys=True)

    def _get_combination_from_action(self, action_key: str) -> Dict[str, str]:
        return json.loads(action_key)

    def choose_action(self, current_state: Dict[str, Any]) -> Dict[str, str]:
        # Epsilon-greedy strategy
        if np.random.rand() < self.epsilon:
            # Explore: choose a random combination
            chosen_combination = {}
            for category, elements in self.creative_elements.items():
                chosen_combination[category] = random.choice(elements)
            return chosen_combination
        else:
            # Exploit: choose the best action from Q-table for current state
            best_q_value = -float('inf')
            best_combination = None

            # Iterate through all possible combinations to find the one with max Q-value
            # This is highly inefficient for large action spaces; deep RL is needed here.
            # For conceptual demo, assume small number of combinations
            all_possible_combinations = self._generate_all_combinations()

            for combo in all_possible_combinations:
                action_key = self._get_action_from_combination(combo)
                state_key = json.dumps(current_state, sort_keys=True) # Assuming state is JSON serializable

                q_value = self.q_table[(state_key, action_key)]
                if q_value > best_q_value:
                    best_q_value = q_value
                    best_combination = combo

            return best_combination if best_combination else self._generate_all_combinations()[0] # Fallback

    def _generate_all_combinations(self) -> List[Dict[str, str]]:
        # Helper to generate all possible combinations of creative elements
        from itertools import product
        keys = list(self.creative_elements.keys())
        values = [self.creative_elements[key] for key in keys]

        all_combos = []
        for combo_tuple in product(*values):
            all_combos.append(dict(zip(keys, combo_tuple)))
        return all_combos

    def update_q_table(self, state: Dict[str, Any], action: Dict[str, str], reward: float, next_state: Dict[str, Any]):
        state_key = json.dumps(state, sort_keys=True)
        action_key = self._get_action_from_combination(action)
        next_state_key = json.dumps(next_state, sort_keys=True)

        current_q = self.q_table[(state_key, action_key)]

        # Max Q-value for next state (assuming we can compute it)
        max_next_q = max([self.q_table[(next_state_key, self._get_action_from_combination(a))] 
                          for a in self._generate_all_combinations()]) if next_state else 0.0

        # Q-learning update rule
        new_q = current_q + self.learning_rate * (reward + 0.9 * max_next_q - current_q)
        self.q_table[(state_key, action_key)] = new_q

7. 部署、监控与可扩展性

一个如此复杂的系统需要健壮的部署、监控和可扩展性设计。

  • 微服务架构: 将各个组件(数据采集、ETL、Agent、创意库、API网关)拆分成独立的微服务,便于开发、部署和扩展。
  • 容器化与编排: 使用Docker容器化每个服务,并通过Kubernetes进行自动化部署、扩展和管理。
  • 消息队列: Kafka或RabbitMQ可用于异步处理数据流、任务分发和Agent指令。例如,数据采集器将原始数据发送到Kafka,ETL服务订阅并处理;Agent决策发布到Kafka,行动模块订阅并执行。
  • 监控与告警: Prometheus和Grafana用于收集和可视化系统指标;ELK Stack(Elasticsearch, Logstash, Kibana)用于集中日志管理;Sentry用于错误告警。
  • 数据库扩展: 针对数据仓库,考虑分库分表、读写分离、以及使用ClickHouse这类列式存储来应对海量数据分析需求。

结语

构建一个跨平台智能营销集群是数据工程、人工智能和营销策略的深度融合。通过智能代理的感知、决策与行动,我们不仅能实现广告投放的自动化,更能通过自主优化创意素材,让营销活动持续进化,始终保持竞争力。这趟旅程充满挑战,但也蕴含着无限可能,它将彻底改变我们理解和实践数字营销的方式。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注